Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(19): 8526-8530, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696219

RESUMEN

Photoluminescent coordination complexes of Cr(III) are of interest as near-infrared spin-flip emitters. Here, we explore the preparation, electrochemistry, and photophysical properties of the first two examples of homoleptic N-heterocyclic carbene complexes of Cr(III), featuring 2,6-bis(imidazolyl)pyridine (ImPyIm) and 2-imidazolylpyridine (ImPy) ligands. The complex [Cr(ImPy)3]3+ displays luminescence at 803 nm on the microsecond time scale (13.7 µs) from a spin-flip doublet excited state, which transient absorption spectroscopy reveals to be populated within several picoseconds following photoexcitation. Conversely, [Cr(ImPyIm)2]3+ is nonemissive and has a ca. 500 ps excited-state lifetime.

2.
Inorg Chem ; 63(20): 9084-9097, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38701516

RESUMEN

Photochemical ligand release from metal complexes may be exploited in the development of novel photoactivated chemotherapy agents for the treatment of cancer and other diseases. Highly intriguing photochemical behavior is reported for two ruthenium(II) complexes bearing conformationally flexible 1,2,3-triazole-based ligands incorporating a methylene spacer to form 6-membered chelate rings. [Ru(bpy)2(pictz)]2+ (1) and [Ru(bpy)2(btzm)]2+ (2) (bpy = 2,2'-bipyridyl; pictz = 1-(picolyl)-4-phenyl-1,2,3-triazole; btzm = bis(4-phenyl-1,2,3-triazol-4-yl)methane) exhibit coordination by the triazole ring through the less basic N2 atom as a consequence of chelation and readily undergo photochemical release of the pictz and btzm ligands (ϕ = 0.079 and 0.091, respectively) in acetonitrile solution to form cis-[Ru(bpy)2(NCMe)2]2+ (3) in both cases. Ligand-loss intermediates of the form [Ru(bpy)2(κ1-pictz or κ1-btzm)(NCCD3)]2+ are detected by 1H NMR spectroscopy and mass spectrometry. Photolysis of 1 yields three ligand-loss intermediates with monodentate pictz ligands, two of which form through simple decoordination of either the pyridine or triazole donor with subsequent solvent coordination (4-tz(N2) and 4-py, respectively). The third intermediate, shown to be able to form photochemically directly from 1, arises through linkage isomerism in which the monodentate pictz ligand is coordinated by the triazole N3 atom (4-tz(N3)) with a comparable ligand-loss intermediate with an N3-bound κ1-btzm ligand also observed for 2.

3.
Dalton Trans ; 52(27): 9186-9188, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37382228
4.
J Am Chem Soc ; 145(22): 12081-12092, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224437

RESUMEN

A detailed understanding of the dynamics of photoinduced processes occurring in the electronic excited state is essential in informing the rational design of photoactive transition-metal complexes. Here, the rate of intersystem crossing in a Cr(III)-centered spin-flip emitter is directly determined through the use of ultrafast broadband fluorescence upconversion spectroscopy (FLUPS). In this contribution, we combine 1,2,3-triazole-based ligands with a Cr(III) center and report the solution-stable complex [Cr(btmp)2]3+ (btmp = 2,6-bis(4-phenyl-1,2,3-triazol-1-yl-methyl)pyridine) (13+), which displays near-infrared (NIR) luminescence at 760 nm (τ = 13.7 µs, ϕ = 0.1%) in fluid solution. The excited-state properties of 13+ are probed in detail through a combination of ultrafast transient absorption (TA) and femtosecond-to-picosecond FLUPS. Although TA spectroscopy allows us to observe the evolution of phosphorescent excited states within the doublet manifold, more significantly and for the first time for a complex of Cr(III), we utilize FLUPS to capture the short-lived fluorescence from initially populated quartet excited states immediately prior to the intersystem crossing process. The decay of fluorescence from the low-lying 4MC state therefore allows us to assign a value of (823 fs)-1 to the rate of intersystem crossing. Importantly, the sensitivity of FLUPS to only luminescent states allows us to disentangle the rate of intersystem crossing from other closely associated excited-state events, something which has not been possible in the spectroscopic studies previously reported for luminescent Cr(III) systems.

5.
Chemistry ; 29(11): e202203250, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36398697

RESUMEN

G-quadruplexes are emerging targets in cancer research and understanding how diagnostic probes bind to DNA G-quadruplexes in solution is critical to the development of new molecular tools. In this study the binding of an enantiopure NIR emitting [Os(TAP)2 (dppz)]2+ complex to different G-quadruplex structures formed by human telomer (hTel) and cMYC sequences in solution is reported. The combination of NMR and time-resolved infrared spectroscopic techniques reveals the sensitivity of the emission response to subtle changes in the binding environment of the complex. Similar behaviour is also observed for the related complex [Os(TAP)2 (dppp2)]2+ upon quadruplex binding.


Asunto(s)
G-Cuádruplex , Osmio , Humanos , ADN/química , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética
6.
Inorg Chem ; 61(49): 19907-19924, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450138

RESUMEN

Ruthenium(II) complexes feature prominently in the development of agents for photoactivated chemotherapy; however, the excited-state mechanisms by which photochemical ligand release operates remain unclear. We report here a systematic experimental and computational study of a series of complexes [Ru(bpy)2(N∧N)]2+ (bpy = 2,2'-bipyridyl; N∧N = bpy (1), 6-methyl-2,2'-bipyridyl (2), 6,6'-dimethyl-2,2'-bipyridyl (3), 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (4), 1-benzyl-4-(6-methylpyrid-2-yl)-1,2,3-triazole (5), 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl (6)), in which we probe the contribution to the promotion of photochemical N∧N ligand release of the introduction of sterically encumbering methyl substituents and the electronic effect of replacement of pyridine by 1,2,3-triazole donors in the N∧N ligand. Complexes 2 to 6 all release the ligand N∧N on irradiation in acetonitrile solution to yield cis-[Ru(bpy)2(NCMe)2]2+, with resultant photorelease quantum yields that at first seem counter-intuitive and span a broad range. The data show that incorporation of a single sterically encumbering methyl substituent on the N∧N ligand (2 and 5) leads to a significantly enhanced rate of triplet metal-to-ligand charge-transfer (3MLCT) state deactivation but with little promotion of photoreactivity, whereas replacement of pyridine by triazole donors (4 and 6) leads to a similar rate of 3MLCT deactivation but with much greater photochemical reactivity. The data reported here, discussed in conjunction with previously reported data on related complexes, suggest that monomethylation in 2 and 5 sterically inhibits the formation of a 3MCcis state but promotes the population of 3MCtrans states which rapidly deactivate 3MLCT states and are prone to mediating ground-state recovery. On the other hand, increased photochemical reactivity in 4 and 6 seems to stem from the accessibility of 3MCcis states. The data provide important insights into the excited-state mechanism of photochemical ligand release by Ru(II) tris-bidentate complexes.


Asunto(s)
Compuestos Organometálicos , Rutenio , Ligandos , Teoría Cuántica , Compuestos Organometálicos/química , Rutenio/química , Triazoles
7.
Inorg Chem ; 61(38): 14947-14961, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094851

RESUMEN

The synthesis and photophysical characterization of two osmium(II) polypyridyl complexes, [Os(TAP)2dppz]2+ (1) and [Os(TAP)2dppp2]2+ (2) containing dppz (dipyrido[3,2-a:2',3'-c]phenazine) and dppp2 (pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline) intercalating ligands and TAP (1,4,5,8-tetraazaphenanthrene) ancillary ligands, are reported. The complexes exhibit complex electrochemistry with five distinct reductive redox couples, the first of which is assigned to a TAP-based process. The complexes emit in the near-IR (1 at 761 nm and 2 at 740 nm) with lifetimes of >35 ns with a low quantum yield of luminescence in aqueous solution (∼0.25%). The Δ and Λ enantiomers of 1 and 2 are found to bind to natural DNA and with AT and GC oligodeoxynucleotides with high affinities. In the presence of natural DNA, the visible absorption spectra are found to display significant hypochromic shifts, which is strongly evident for the ligand-centered π-π* dppp2 transition at 355 nm, which undergoes 46% hypochromism. The emission of both complexes increases upon DNA binding, which is observed to be sensitive to the Δ or Λ enantiomer and the DNA composition. A striking result is the sensitivity of Λ-2 to the presence of AT DNA, where a 6-fold enhancement of luminescence is observed and reflects the nature of the binding for the enantiomer and the protection from solution. Thermal denaturation studies show that both complexes are found to stabilize natural DNA. Finally, cellular studies show that the complexes are internalized by cultured mammalian cells and localize in the nucleus.


Asunto(s)
Sustancias Intercalantes , Rutenio , Animales , ADN/química , Sustancias Intercalantes/química , Ligandos , Mamíferos/metabolismo , Oligodesoxirribonucleótidos , Osmio , Fenantrolinas/química , Fenazinas/química , Rutenio/química
8.
Dalton Trans ; 51(36): 13692-13702, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36001010

RESUMEN

The tris(1,2,3-triazol-4-yl)methane framework offers a highly versatile architecture for ligand design, yet the coordination chemistry of this class of ligand remains largely unexplored. We report here the synthesis and characterisation of the homoleptic complexes [M(ttzm)2](PF6)2 (ttzm = tris(1-benzyl-1,2,3-triazol-4-yl)-p-anisolylmethane; M = Fe (Fe), Ru (Ru), Os (Os)). Initial attempts to prepare Ru by reaction of [Ru(p-cymene)Cl2]2 and ttzm also led to the isolation of the heteroleptic complex [Ru(p-cymene)(ttzm)](PF6)2. The structures of [Ru(p-cymene)(ttzm)](PF6)2, [Fe(ttzm)2]2+ (as its BPh4- salt) and Os were solved by X-ray diffraction. The homoleptic Fe(II) and Os(II) containing cations adopt distorted octahedral geometries due to the steric interactions between the ansiole and triazole rings of the ttzm ligands. The homoleptic complexes all adopt a low-spin d6 configuration and exhibit reversible M(II)/M(III) processes (+0.35 to +0.72 V vs. Fc/Fc+). These oxidation processes are cathodically shifted relative to those of related hexatriazole donor based complexes with density functional theory (DFT) calculations showing the metal d-orbitals are destabilised through a π-donor contribution from the triazole rings. The complexes all show prominent UV-visible absorption bands between 350 and 450 nm assigned to transitions of 1MLCT character. Whilst none of the homoleptic complexes are emissive in room temperature fluid solutions, Os is emissive at 77 K in an EtOH/MeOH glass (λmax 472 nm).

9.
Inorg Chem ; 60(20): 15768-15781, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34612633

RESUMEN

Diimine metal complexes have significant relevance in the development of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) applications. In particular, complexes of the TAP ligand (1,4,5,8-tetraazaphenanthrene) are known to lead to photoinduced oxidation of DNA, while TAP- and triazole-based complexes are also known to undergo photochemical ligand release processes relevant to PACT. The photophysical and photochemical properties of heteroleptic complexes [Ru(TAP)n(btz)3-n]2+ (btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, n = 1 (1), 2 (2)) have been explored. Upon irradiation in acetonitrile, 1 displays analogous photochemistry to that previously observed for [Ru(bpy)(btz)2]2+ (bpy = 2,2'-bipyridyl) and generates trans-[Ru(TAP)(btz)(NCMe)2]2+ (5), which has been crystallographically characterized, with the observation of the ligand-loss intermediate trans-[Ru(TAP)(κ2-btz)(κ1-btz)(NCMe)]2+ (4). Complex 2 displays more complicated photochemical behavior with not only preferential photorelease of btz to form cis-[Ru(TAP)2(NCMe)2]2+ (6) but also competitive photorelease of TAP to form 5. Free TAP is then taken up by 6 to form [Ru(TAP)3]2+ (3) with the proportion of 5 and 3 observed to progressively increase during prolonged photolysis. Data suggest a complex set of reversible photochemical ligand scrambling processes in which 2 and 3 are interconverted. Computational DFT calculations have enabled optimization of geometries of the pro-trans 3MCcis states with repelled btz or TAP ligands crucial for the formation of 5 from 1 and 2, respectively, lending weight to recent evidence that such 3MCcis states play an important mechanistic role in the rich photoreactivity of Ru(II) diimine complexes.

10.
Dalton Trans ; 50(3): 830-834, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33427837

RESUMEN

Re(i) complexes bearing thermally reversible photochromic naphthopyran axial ligands undergo highly efficient, reversible phosphorescence quenching actuated by either visible or UV irradiation. The photoinduced quenching of the triplet metal-to-ligand charge-transfer (3MLCT) emission is interpreted based on changes in the relative energies of the excited states.

11.
J Org Chem ; 85(16): 10772-10796, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32806102

RESUMEN

Multitarget synthetic strategies to access novel photochromic 3H-naphtho[2,1-b]pyrans decorated with pyridyl units are described. The new pyridyl-substituted 3H-naphtho[2,1-b]pyrans display good photochromic properties with reversible generation of photomerocyanines, which exhibit mainly orange/red hues. Photochromic parameters including photocolorability and persistence of color vary tremendously on structural modification of the naphthopyran core.

12.
Inorg Chem ; 59(20): 14679-14695, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32809807

RESUMEN

A complete mechanistic picture for the photochemical release of bipyridine (bpy) from the archetypal complex [Ru(bpy)3]2+ is presented for the first time following the description of the ground and lowest triplet potential energy surfaces, as well as their key crossing points, involved in successive elementary steps along pathways toward cis- and trans-[Ru(bpy)2(NCMe)2]2+. This work accounts for two main pathways that are identified involving (a) two successive photochemical reactions for photodechelation, followed by the photorelease of a monodentate bpy ligand, and (b) a novel one-photon mechanism in which the initial photoexcitation is followed by dechelation, solvent coordination, and bpy release processes, all of which occur sequentially within the triplet excited-state manifold before the final relaxation to the singlet state and formation of the final photoproducts. For the reaction between photoexcited [Ru(bpy)3]2+ and acetonitrile, which is taken as a model reaction, pathways toward cis and trans photoproducts are uphill processes, in line with the comparative inertness of the complex in this solvent. Factors involving the nature of the departing ligand and retained "spectator" ligands are considered, and their role in the selection of mechanistic pathways involving overall two sequential photon absorptions versus one photon absorption for the formation of both cis or trans photoproducts is discussed in relation to notable examples from the literature. This study ultimately provides a generalized roadmap of accessible photoproductive pathways for light-induced reactivity mechanisms of photolabile [Ru(N^N)(N^N')(N^N″)]2+-type complexes.

13.
Inorg Chem ; 59(3): 1785-1803, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31934759

RESUMEN

Fundamental insights into the mechanism of triplet-excited-state interligand energy transfer dynamics and the origin of dual emission for phosphorescent iridium(III) complexes are presented. The complexes [Ir(C∧N)2(N∧N)]+ (HC∧N = 2-phenylpyridine (1a-c), 2-(2,4-difluorophenyl)pyridine (2a-c), 1-benzyl-4-phenyl-1,2,3-triazole (3a-c); N∧N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (pytz, a), 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (pymtz, b), 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (pyztz, c)) are phosphorescent in room-temperature fluid solutions from triplet metal-to-ligand charge transfer (3MLCT) states admixed with either ligand-centered (3LC) (1a, 2a, and 2b) or ligand-to-ligand charge transfer (3LL'CT) character (1c, 2c, and 3a-c). Particularly striking is the observation that pyrimidine-based complex 1b exhibits dual emission from both 3MLCT/3LC and 3MLCT/3LL'CT states. At 77 K, the 3MLCT/3LL'CT component is lost from the photoluminescence spectra of 1b, with emission exclusively arising from its 3MLCT/3LC state, while for 2c switching from 3MLCT/3LL'CT- to 3MLCT/3LC-based emission is observed. Femtosecond transient absorption data reveal distinct spectral signatures characteristic of the population of 3MLCT/3LC states for 1a, 2a, and 2b which persist throughout the 3 ns time frame of the experiment. These 3MLCT/3LC state signatures are apparent in the transient absorption spectra for 1c and 2c immediately following photoexcitation but rapidly evolve to yield spectral profiles characteristic of their 3MLCT/3LL'CT states. Transient data for 1b reveals intermediate behavior: the spectral features of the initially populated 3MLCT/3LC state also undergo rapid evolution, although to a lesser extent than that observed for 1c and 2c, behavior assigned to the equilibration of the 3MLCT/3LC and 3MLCT/3LL'CT states. Density functional theory (DFT) calculations enabled minima to be optimized for both 3MLCT/3LC and 3MLCT/3LL'CT states of 1a-c and 2a-c. Indeed, two distinct 3MLCT/3LC minima were optimized for 1a, 1b, 2a, and 2b distinguished by upon which of the two C∧N ligands the excited electron resides. The 3MLCT/3LC and 3MLCT/3LL'CT states for 1b are very close in energy, in excellent agreement with experimental data demonstrating dual emission. Calculated vibrationally resolved emission spectra (VRES) for the complexes are in excellent agreement with experimental data, with the overlay of spectral maxima arising from emission from the 3MLCT/3LC and 3MLCT/3LL'CT states of 1b convincingly reproducing the observed experimental spectral features. Analysis of the optimized excited-state geometries enable the key structural differences between the 3MLCT/3LC and 3MLCT/3LL'CT states of the complexes to be identified and quantified. The calculation of interconversion pathways between triplet excited states provides for the first time a through-space mechanism for a photoinduced interligand energy transfer process. Furthermore, examination of structural changes between the possible emitting triplet excited states reveals the key bond vibrations that mediate energy transfer between these states. This work therefore provides for the first time detailed mechanistic insights into the fundamental photophysical processes of this important class of complexes.

14.
Chem Sci ; 11(33): 8928-8935, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34123147

RESUMEN

Cellular uptake, luminescence imaging and antimicrobial activity against clinically relevant methicillin-resistant S. aureus (MRSA) bacteria are reported. The osmium(ii) complexes [Os(N^N)3]2+ (N^N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (1 2+); 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (2 2+); 1-benzyl-4-(pyrazin-2-yl)-1,2,3-triazole (3 2+)) were prepared and isolated as the chloride salts of their meridional and facial isomers. The complexes display prominent spin-forbidden ground state to triplet metal-to-ligand charge transfer (3MLCT) state absorption bands enabling excitation as low as 600 nm for fac/mer-3 2+ and observation of emission in aqueous solution in the deep-red/near-IR regions of the spectrum. Cellular uptake studies within MRSA cells show antimicrobial activity for 1 2+ and 2 2+ with greater toxicity for the meridional isomers in each case and mer-1 2+ showing the greatest potency (32 µg mL-1 in defined minimal media). Super-resolution imaging experiments demonstrate binding of mer- and fac-1 2+ to bacterial DNA with high Pearson's colocalisation coefficients (up to 0.95 using DAPI). Phototoxicity studies showed the complexes exhibited a higher antimicrobial activity upon irradiation with light.

15.
Inorg Chem ; 58(13): 8607-8621, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31180230

RESUMEN

In a systematic survey of luminescent bis(terdentate) osmium(II) complexes, a tipping point involving a reversal in photophysical tuning is observed whereby increasing stabilization of the ligand-based lowest unoccupied molecular orbital (LUMO) results in a blue shift in the optical absorption and emission bands. The complexes [Os(N^N'^N″)2]2+ [N^N'^N″ = 2,6-bis(1-phenyl-1,2,3-triazol-4-yl)pyridine (Os1), 2,6-bis(1-benzyl-1,2,3-triazol-4-yl)pyrazine (Os2), 6-(1-benzyl-1,2,3-triazol-4-yl)-2,2'-bipyridyl (Os3), 2-(pyrid-2-yl)-6-(1-benzyl-1,2,3-triazol-4-yl)pyrazine (Os4), 2-(pyrazin-2-yl)-6-(1-benzyl-1,2,3-triazol-4-yl)pyridine (Os5), and 6-(1-benzyl-1,2,3-triazol-4-yl)-2,2'-bipyrazinyl (Os6)] have been prepared and characterized, and all complexes display phosphorescence ranging from the orange to near-IR regions of the spectrum. Replacement of the central pyridine in the ligands of Os1 by the more π-accepting pyrazine in Os2 results in a 55 nm red shift in the triplet metal-to-ligand charge-transfer-based emission band, while a larger red shift of 107 nm is observed for the replacement of one of the triazole donors in the ligands of Os1 by a second pyridine ring in Os3 (λemmax = 702 nm). Interestingly, replacement of the central pyridine ring in the ligands of Os3 by pyrazine (Os4, λemmax = 702 nm) fails to result in a further red shift in the emission band. Reversal of the relative positions of the pyridine and pyrazine donors in Os5 (λemmax = 733 nm) compared to Os4 does indeed result in the expected red shift in the emission with respect to that for Os3 based on the increased π-acceptor character of the ligands present. However, an inversion in emission tuning is observed for Os6, in which the incorporation of a second pyrazine donor in the ligand architecture results in a blue shift in the optical absorption and emission maxima (λemmax = 710 nm). Electrochemical studies reveal that while incorporating pyrazine in the ligands indeed results in an expected anodic shift in the first reduction potential through stabilization of the ligand-based LUMO, there is also a concomitant anodic shift in the OsII/OsIII-based oxidation potential. This stabilization of the metal-based highest occupied molecular orbital (HOMO) thus nullifies the effect of stabilization of the LUMO in Os4 compared to Os3, resulting in these complexes having coincident emission maxima. For Os6, stabilization of the HOMO through the incorporation of two pyrazine donors in the ligand structure now exceeds stabilization of the LUMO, resulting in a larger HOMO-LUMO gap and a counterintuitive blue shift in the optical properties in comparison with those of Os5. While it is known that the replacement of ligands (e.g., replacing bipyridyl with bipyrazinyl) can result in a larger HOMO-LUMO energy gap through greater stabilization of the HOMO, these results importantly allow us to capture the tipping point at which this inversion in photophysical tuning occurs. This therefore enables us to explore the limits available in emission tuning with a relatively simple and minimalist ligand structure.

16.
Inorg Chem ; 57(21): 13201-13212, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30351084

RESUMEN

The series of complexes [Os(bpy)3- n(pytz) n][PF6]2 (bpy = 2,2'-bipyridyl, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole, 1 n = 0, 2 n = 1, 3 n = 2, 4 n = 3) were prepared and characterized and are rare examples of luminescent 1,2,3-triazole-based osmium(II) complexes. For 3 we present an attractive and particularly mild preparative route via an osmium(II) η6-arene precursor circumventing the harsh conditions that are usually required. Because of the high spin-orbit coupling constant associated with the Os(II) center the absorption spectra of the complexes all display absorption bands of appreciable intensity in the range of 500-700 nm corresponding to spin-forbidden ground-state-to-3MLCT transitions (MLCT = metal-to-ligand charge transfer), which occur at significantly lower energies than the corresponding spin-allowed 1MLCT transitions. The homoleptic complex 4 is a bright emitter (λmaxem = 614 nm) with a relatively high quantum yield of emission of ∼40% in deoxygenated acetonitrile solutions at room temperature. Water-soluble chloride salts of 1-4 were also prepared, all of which remain emissive in aerated aqueous solutions at room temperature. The complexes were investigated for their potential as phosphorescent cellular imaging agents, whereby efficient excitation into the 3MLCT absorption bands at the red side of the visible range circumvents autofluorescence from biological specimens, which do not absorb in this region of the spectrum. Confocal microscopy reveals 4 to be readily taken up by cancer cell lines (HeLa and EJ) with apparent lysosomal and endosomal localization, while toxicity assays reveal that the compounds have low dark and light toxicity. These complexes therefore provide an excellent platform for the development of efficient luminescent cellular imaging agents with advantageous photophysical properties that enable excitation and emission in the biologically transparent region of the optical spectrum.


Asunto(s)
Complejos de Coordinación/química , Sustancias Luminiscentes/química , Imagen Óptica , Osmio/química , Piridinas/química , Triazoles/química , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Células HeLa , Humanos , Sustancias Luminiscentes/síntesis química , Sustancias Luminiscentes/farmacología , Mediciones Luminiscentes , Estructura Molecular , Procesos Fotoquímicos , Teoría Cuántica , Células Tumorales Cultivadas
17.
Angew Chem Int Ed Engl ; 57(31): 9799-9804, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29863754

RESUMEN

The ligands L1 and L2 both form separable dinuclear double-stranded helicate and mesocate complexes with RuII . In contrast to clinically approved platinates, the helicate isomer of [Ru2 (L1 )2 ]4+ was preferentially cytotoxic to isogenic cells (HCT116 p53-/- ), which lack the critical tumour suppressor gene. The mesocate isomer shows the reverse selectivity, with the achiral isomer being preferentially cytotoxic towards HCT116 p53+/+ . Other structurally similar RuII -containing dinuclear complexes showed very little cytotoxic activity. This study demonstrates that alterations in ligand or isomer can have profound effects on cytotoxicity towards cancer cells of different p53 status and suggests that selectivity can be "tuned" to either genotype. In the search for compounds that can target difficult-to-treat tumours that lack the p53 tumour suppressor gene, [Ru2 (L1 )2 ]4+ is a promising compound for further development.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Compuestos Organometálicos/farmacología , Rutenio/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Rutenio/química , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/metabolismo
18.
Dalton Trans ; 47(14): 4931-4940, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29552680

RESUMEN

Two new biscyclometalated complexes [Ir(ptzR)2(dppz)]+ (dppz = dipyridophenazene; ptzRH = 4-phenyl-1-benzyl-1,2,3-triazole (1+) and 4-phenyl-1-propyl-1,2,3-triazole (2+)) have been prepared. The hexafluorophosphate salts of these complexes have been fully characterized and, in one case, the X-ray structure of a nitrate salt was obtained. The DNA binding properties of the chloride salts of the complexes were investigated, as well as their cellular uptake by A2780 and MCF7 cell lines. Both complexes display an increase in the intensity of phosphorescence upon titration with duplex DNA, indicating the intercalation of the dppz ligand and, given that they are monocations, the complexes exhibit appreciable DNA binding affinity. Optical microscopy studies reveal that both complexes are taken up by live cancer cell lines displaying cytosol based luminescence. Colocalization studies with commercial probes show high Pearson coefficients with mitotracker dyes confirming that the new complexes specifically localize on mitochondria.

19.
Inorg Chem ; 57(6): 3192-3196, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29509005

RESUMEN

We have identified a new 3MC state bearing two elongated Ru-N bonds to the same ligand in [Ru(bpy)3]2+. This DFT-optimized structure is a local minimum on the 3PES. This distal MC state (3MCcis) is destabilized by less than 2 kcal/mol with respect to the classical MC state (3MCtrans), and energy barriers to populate 3MCcis and 3MCtrans from the 3MLCT state are similar according to nudged elastic band minimum energy path calculations. Distortions in the classical 3MCtrans, that is, elongation of two Ru-N bonds toward two different bpy ligands, are not expected to favor the formation of ligand-loss photoproducts. On the contrary, the new 3MCcis could be particularly relevant in the photodegradation of Ru(II) polypyridine complexes.

20.
Dalton Trans ; 46(47): 16343-16356, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109990

RESUMEN

The photophysical properties of transition metal complexes have long attracted interest in the literature with significant research activity during the past two to three decades due to the potential exploitation of these materials in solar energy conversion, light-emitting technology, luminescence biological imaging and photodynamic therapeutic applications to name but a few. Since the advent of the facile preparation of 1,2,3-triazole-based compounds through copper(i)-catalysed cycloaddition, ligands based on this heterocycle have received widespread attention in coordination chemistry. Inevitably, their ability to be used as pyridine-like analogues has resulted in significant attention on the photophysical properties of their resultant complexes. There are, however, two sides to this tale; on the one hand, routes to 1,2,3-triazoles have enabled the realisation of highly tunable and efficient phosphors and photosensitisers. On the other hand, 1,2,3-triazole-based complexes have allowed highly novel photochemical processes to be explored offering insights into hitherto unappreciated excited state dynamics. This Perspective review covers the developments of photophysically active triazole-based complexes over the last decade, highlighting some of the key discoveries from our own laboratory as well as seminal contributions from other groups who are active in the area. We also identify possible new avenues for investigation and exploitation stemming from the work so far.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...