Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702970

RESUMEN

Plants employ a diversity of reproductive safeguarding strategies to circumvent the challenge of pollen limitation. Focusing on southern African Lachenalia (Asparagaceae: Scilloideae), we test the hypothesis that the evolution of reproductive safeguarding traits (self-compatibility, autonomous selfing, bird pollination and clonal propagation) is favoured in species occupying conditions of low insect abundance imposed by critically infertile fynbos heathland vegetation and by flowering outside the austral spring insect abundance peak. We trace the evolution of these traits and selective regimes on a dated, multi-locus phylogeny of Lachenalia and assess their evolutionary associations using ordinary and phylogenetic regression. Ancestral state reconstructions identify an association with non-fynbos vegetation and spring flowering as ancestral in Lachenalia, the transition to fynbos vegetation and non-spring flowering taking place multiple times. They also show that self-compatibility, autofertility, bird pollination and production of multiple clonal offsets have evolved repeatedly. Regression models suggest that bird pollination and self-compatibility are selected for in fynbos and in non-spring flowering lineages, with autofertility being positively associated with non-spring flowering. These patterns support the interpretation of these traits as reproductive safeguarding adaptations under reduced insect pollinator abundance. We find no evidence to support the interpretation of clonal propagation as a reproductive safeguarding strategy.

2.
Curr Biol ; 33(8): 1502-1512.e8, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36963385

RESUMEN

Gene co-option, the redeployment of an existing gene in an unrelated developmental context, is an important mechanism underlying the evolution of morphological novelty. In most cases described to date, novel traits emerged by co-option of a single gene or genetic network. Here, we show that the integration of multiple co-opted genetic elements facilitated the rapid evolution of complex petal spots that mimic female bee-fly pollinators in the sexually deceptive South African daisy Gorteria diffusa. First, co-option of iron homeostasis genes altered petal spot pigmentation, producing a color similar to that of female pollinators. Second, co-option of the root hair gene GdEXPA7 enabled the formation of enlarged papillate petal epidermal cells, eliciting copulation responses from male flies. Third, co-option of the miR156-GdSPL1 transcription factor module altered petal spot placement, resulting in better mimicry of female flies resting on the flower. The three genetic elements were likely co-opted sequentially, and strength of sexual deception in different G. diffusa floral forms strongly correlates with the presence of the three corresponding morphological alterations. Our findings suggest that gene co-options can combine in a modular fashion, enabling rapid evolution of novel complex traits.


Asunto(s)
Asteraceae , Dípteros , Orchidaceae , Masculino , Femenino , Abejas/genética , Animales , Polinización/fisiología , Redes Reguladoras de Genes , Dípteros/genética , Flores/fisiología , Asteraceae/genética , Orchidaceae/fisiología
3.
Sci Adv ; 7(42): eabd3524, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34644118

RESUMEN

Despite evidence of pollinator declines from many regions across the globe, the threat this poses to plant populations is not clear because plants can often produce seeds without animal pollinators. Here, we quantify pollinator contribution to seed production by comparing fertility in the presence versus the absence of pollinators for a global dataset of 1174 plant species. We estimate that, without pollinators, a third of flowering plant species would produce no seeds and half would suffer an 80% or more reduction in fertility. Pollinator contribution to plant reproduction is higher in plants with tree growth form, multiple reproductive episodes, more specialized pollination systems, and tropical distributions, making these groups especially vulnerable to reduced service from pollinators. These results suggest that, without mitigating efforts, pollinator declines have the potential to reduce reproduction for most plant species, increasing the risk of population declines.

4.
Cladistics ; 37(3): 276-297, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34478201

RESUMEN

Bombyliidae is a very species-rich and widespread family of parasitoid flies with more than 250 genera classified into 17 extant subfamilies. However, little is known about their evolutionary history or how their present-day diversity was shaped. Transcriptomes of 15 species and anchored hybrid enrichment (AHE) sequence captures of 86 species, representing 94 bee fly species and 14 subfamilies, were used to reconstruct the phylogeny of Bombyliidae. We integrated data from transcriptomes across each of the main lineages in our AHE tree to build a data set with more genes (550 loci versus 216 loci) and higher support levels. Our overall results show strong congruence with the current classification of the family, with 11 out of 14 included subfamilies recovered as monophyletic. Heterotropinae and Mythicomyiinae are successive sister groups to the remainder of the family. We examined the evolution of key morphological characters through our phylogenetic hypotheses and show that neither the "sand chamber subfamilies" nor the "Tomophthalmae" are monophyletic in our phylogenomic analyses. Based on our results, we reinstate two tribes at the subfamily level (Phthiriinae stat. rev. and Ecliminae stat. rev.) and we include the genus Sericosoma Macquart (previously incertae sedis) in the subfamily Oniromyiinae, bringing the total number of bee fly subfamilies to 19. Our dating analyses indicate a Jurassic origin of the family (165-194 Ma), with the sand chamber evolving early in bee fly evolution, in the late Jurassic or mid-Cretaceous (100-165 Ma). We hypothesize that the angiosperm radiation and the hothouse climate established during the late Cretaceous accelerated the diversification of bee flies, by providing an expanded range of resources for the parasitoid larvae and nectarivorous adults.


Asunto(s)
Abejas/clasificación , Biodiversidad , Evolución Molecular , Larva/fisiología , Filogenia , Transcriptoma , Animales , Abejas/genética , Abejas/fisiología , Larva/genética , Análisis de Secuencia de ADN
5.
Front Plant Sci ; 12: 617761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33597961

RESUMEN

The striking variation in flower color across and within Angiosperm species is often attributed to divergent selection resulting from geographic mosaics of pollinators with different color preferences. Despite the importance of pollinator mosaics in driving floral divergence, the distributions of pollinators and their color preferences are seldom quantified. The extensive mass-flowering displays of annual daisy species in Namaqualand, South Africa, are characterized by striking color convergence within communities, but also color turnover within species and genera across large geographic scales. We aimed to determine whether shifts between orange and white-flowered daisy communities are driven by the innate color preferences of different pollinators or by soil color, which can potentially affect the detectability of different colored flowers. Different bee-fly pollinators dominated in both community types so that largely non-overlapping pollinator distributions were strongly associated with different flower colors. Visual modeling demonstrated that orange and white-flowered species are distinguishable in fly vision, and choice experiments demonstrated strongly divergent color preferences. We found that the dominant pollinator in orange communities has a strong spontaneous preference for orange flowers, which was not altered by conditioning. Similarly, the dominant pollinator in white communities exhibited an innate preference for white flowers. Although detectability of white flowers varied across soil types, background contrast did not alter color preferences. These findings demonstrate that landscape-level flower color turnover across Namaqua daisy communities is likely shaped by a strong qualitative geographic mosaic of bee-fly pollinators with divergent color preferences. This is an unexpected result given the classically generalist pollination phenotype of daisies. However, because of the dominance of single fly pollinator species within communities, and the virtual absence of bees as pollinators, we suggest that Namaqua daisies function as pollination specialists despite their generalist phenotypes, thus facilitating differentiation of flower color by pollinator shifts across the fly pollinator mosaic.

6.
Microb Ecol ; 82(3): 704-721, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33515051

RESUMEN

Invasive plants often impact soil conditions, notably through changes in soil chemistry and microbial community composition, potentially leading to altered soil functionality. We determine the impacts of invasive nitrogen-fixing Australian Acacia trees on soil chemistry and function (carbon, nitrogen, and phosphorus cycling) in South Africa's Core Cape Subregion, and whether any differences in soil function are linked to differences in soil chemical properties and bacterial community composition between neighbouring acacia-invaded and uninvaded sites. We do so by using Illumina MiSeq sequencing data together with soil chemistry and soil enzyme activity profiles. Acacias significantly increased levels of soil nitrogen (NO3-, NH4+, and total N), C, and pH. Although we did not find evidence that acacias affected soil bacterial community diversity, we did find them to alter bacterial community composition. Acacias also significantly elevated microbial phosphatase activity, but not ß-glucosidase, whilst having contrasting effects on urease. Changes in soil chemical properties under acacia invasion were found to correlate with changes in enzyme activities for urease and phosphatase. Similarly, changes in soil bacterial community composition were correlated to changes in phosphatase enzymatic activity levels under acacia invasion. Whilst we found evidence for acacias altering soil function by changing soil chemical properties and bacterial community composition, these impacts appear to be specific to local site conditions.


Asunto(s)
Acacia , Microbiota , Australia , Nutrientes , Suelo , Microbiología del Suelo
7.
Mol Ecol ; 30(1): 175-192, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152114

RESUMEN

While the tempo of diversification in biodiversity hotspots has received much attention, the spatial scale of diversification has often been overlooked. Addressing this deficiency requires understanding the drivers of population divergence and the spatial scales at which they operate in species-rich clades and ecosystems. South Africa's Succulent Karoo (SK) hotspot provides an excellent system for such research, being both compact (ca. 110,000 km2 ) and home to spectacular in-situ radiations, such as the ruschioid Aizoaceae. Here we use GBS to document genetic structure in two co-occurring ruschioid species, at both coarse (>10 km) and fine (<500 m) spatial scales. Where Ruschia burtoniae shows strong between-population genetic differentiation and no gene flow, Conophytum calculus shows weak differentiation, with high levels of admixture suggesting recent or ongoing gene flow. Community analysis and transplant experiments reveal that R. burtoniae occupies a narrow, low-pH edaphic niche, and at scales of a few hundred metres, areas of elevated genetic turnover correspond to patches of edaphically unsuitable habitat. In contrast, C. calculus occupies a broader niche and exhibits isolation-by-distance without a habitat effect. We suggest that edaphic specialisation, coupled with highly restricted seed and pollen dispersal in heterogeneous landscapes, has played a major role in driving rapid diversification at small spatial scales in this system. However, the contrasting patterns in our study species show that these factors do not influence all organisms uniformly, being strongly modulated by lineage-specific traits that influence both the spatial scale of gene flow and habitat specificity.


Asunto(s)
Ecosistema , Flujo Génico , Biodiversidad
8.
Nat Commun ; 11(1): 3999, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778648

RESUMEN

Land use change, by disrupting the co-evolved interactions between plants and their pollinators, could be causing plant reproduction to be limited by pollen supply. Using a phylogenetically controlled meta-analysis on over 2200 experimental studies and more than 1200 wild plants, we ask if land use intensification is causing plant reproduction to be pollen limited at global scales. Here we report that plants reliant on pollinators in urban settings are more pollen limited than similarly pollinator-reliant plants in other landscapes. Plants functionally specialized on bee pollinators are more pollen limited in natural than managed vegetation, but the reverse is true for plants pollinated exclusively by a non-bee functional group or those pollinated by multiple functional groups. Plants ecologically specialized on a single pollinator taxon were extremely pollen limited across land use types. These results suggest that while urbanization intensifies pollen limitation, ecologically and functionally specialized plants are at risk of pollen limitation across land use categories.


Asunto(s)
Ecología , Fenómenos Fisiológicos de las Plantas , Polen , Polinización , Animales , Abejas , Bases de Datos Factuales , Ecosistema , Filogenia , Plantas/clasificación , Urbanización
9.
PLoS One ; 15(5): e0233597, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32453786

RESUMEN

While biodiversity hotspots are typically identified on the basis of species number per unit area, their exceptional richness is often attributed, either implicitly or explicitly, to high diversification rates. High species concentrations, however, need not reflect rapid diversification, with the diversity of some hotspots accumulating at modest rates over long timespans. Here we explore the relationship between diversification in time vs. diversification in space and develop the concept of diversification density to describe the spatial scale of species accumulation in a clade. We investigate how plant height is associated with both aspects of diversification in Alooideae, a large plant subfamily with its center of diversity in the Greater Cape Floristic Region. We first reconstruct a time-calibrated phylogeny for Alooideae and demonstrate an evolutionary tendency towards reduced plant height. While plant height does not correlate with diversification rate across Alooideae it does so with diversification per unit space: clades of small plants tend to have the highest diversification densities. Furthermore, we find that diversification in time vs. space are uncorrelated. Our results show that diversification rate and density can be decoupled, and suggest that while some biodiversity hotspots might have been generated by high diversification rates, others are the product of high diversification density.


Asunto(s)
Biodiversidad , Evolución Biológica , Plantas/genética , Tracheophyta/genética , Especiación Genética , Filogenia , Plantas/clasificación , Tracheophyta/clasificación
10.
New Phytol ; 223(4): 2063-2075, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31116447

RESUMEN

The role of pollination in the success of invasive plants needs to be understood because invasives have substantial effects on species interactions and ecosystem functions. Previous research has shown both that reproduction of invasive plants is often pollen limited and that invasive plants can have high seed production, motivating the questions: How do invasive populations maintain reproductive success in spite of pollen limitation? What species traits moderate pollen limitation for invaders? We conducted a phylogenetic meta-analysis with 68 invasive, 50 introduced noninvasive and 1931 native plant populations, across 1249 species. We found that invasive populations with generalist pollination or pollinator dependence were less pollen limited than natives, but invasives and introduced noninvasives did not differ. Invasive species produced 3× fewer ovules/flower and >250× more flowers per plant, compared with their native relatives. While these traits were negatively correlated, consistent with a tradeoff, this did not differ with invasion status. Invasive plants that produce many flowers and have floral generalisation are able to compensate for or avoid pollen limitation, potentially helping to explain the invaders' reproductive successes.


Asunto(s)
Especies Introducidas , Filogenia , Plantas/clasificación , Plantas/genética , Polen/fisiología , Carácter Cuantitativo Heredable , Flores/fisiología , Modelos Biológicos , Polinización , Especificidad de la Especie
11.
Ann Bot ; 123(2): 277-288, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29992277

RESUMEN

Background and Aims: As most plants rely on pollination for persistence in communities, pollination interactions should be important determinants of plant community assembly. Here, trait and phylogenetic null modelling approaches were combined with pollinator interaction networks to elucidate the processes structuring flower colour assembly patterns in Asteraceae communities in Namaqualand, South Africa. Methods: Plant species were assigned to flower colour pattern categories (CPCs) that incorporate the complexity of the bulls-eye colour pattern, using pollinator vision models. Null models were used to assess whether daisy communities exhibit clustering (driven by filtering, facilitation or convergence) or overdispersion (driven by competitive exclusion or character displacement) of CPCs. Next, flower visitor networks were constructed for communities with non-random CPC assembly to confirm the functional role of pollinators in determining floral trait assembly. Key Results: Plant species are unevenly distributed across CPCs, the majority of which are not phylogenetically conserved, suggesting that certain CPCs have a selective advantage. Clustering of CPCs in communities is more frequent than overdispersion, and this does not reflect non-random phylogenetic assembly. In most communities at least one CPC is overrepresented relative to null assemblages. Interaction networks show that each community has a single dominant pollinator that strongly interacts with the overrepresented CPC, suggesting a role for pollinator preferences in driving clustered assembly of CPCs within daisy communities. Conclusion: This novel approach, which demonstrates non-random assembly of complex flower colour patterns and corroborates their functional association with particular pollinators, provides strong evidence that pollinators influence plant community assembly. Results suggest that in some community contexts the benefits of pollinator sharing outweigh the costs of heterospecific pollen transfer, generating clustered assembly. They also challenge the perception of generalized pollination in daisies, suggesting instead that complex daisy colour patterns represent a pollination syndrome trait linked to specific fly pollinators.


Asunto(s)
Asteraceae , Ecosistema , Filogenia , Polinización , Animales , Color , Sudáfrica
12.
New Phytol ; 215(4): 1354-1360, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28771816

RESUMEN

Contents 1354 I. 1354 II. 1355 III. 1357 IV. 1357 V. 1359 1359 References 1359 SUMMARY: Interactions between non-native plants and their mutualists are often disrupted upon introduction to new environments. Using legume-rhizobium mutualistic interactions as an example, we discuss two pathways that can influence symbiotic associations in such situations: co-introduction of coevolved rhizobia; and utilization of, and adaptation to, resident rhizobia, hereafter referred to as 'ecological fitting'. Co-introduction and ecological fitting have distinct implications for successful legume invasions and their impacts. Under ecological fitting, initial impacts may be less severe and will accrue over longer periods as novel symbiotic associations and/or adaptations may require fine-tuning over time. Co-introduction will have more profound impacts that will accrue more rapidly as a result of positive feedbacks between densities of non-native rhizobia and their coevolved host plants, in turn enhancing competition between native and non-native rhizobia. Co-introduction can further impact invasion outcomes by the exchange of genetic material between native and non-native rhizobia, potentially resulting in decreased fitness of native legumes. A better understanding of the roles of these two pathways in the invasion dynamics of non-native legumes is much needed, and we highlight some of the exciting research avenues it presents.


Asunto(s)
Fabaceae/fisiología , Rhizobium/fisiología , Simbiosis , Ecosistema
13.
New Phytol ; 216(1): 24-31, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28850182

RESUMEN

Explaining the variation in diversification rate across groups of plants has long been an important goal of botanists. In plants, complex scenarios involving a combination of extrinsic opportunities and intrinsic traits have been used to explain rapid diversification in certain groups. However, we feel that a very simple trait has been neglected from theories of plant diversification, namely plant height. Here, we argue that decreasing plant size should generally lead to an increase in speciation rate and a decrease in extinction rate. Theory suggests that all population genetic processes involved in speciation are influenced by plant size and its correlates, including seed dispersal distance, population size, generation time and the spatial scale at which plants perceive environmental heterogeneity. In addition, several of these variables, notably population size, also influence rates of extinction. We support our arguments with an empirical analysis showing that plant height is indeed negatively correlated with net diversification rate across families of angiosperms. Finally, we outline how the finer aspects of our hypothesis could be tested, at both micro- and macroevolutionary scales. In addition to strengthening our understanding of the effect of plant size on evolutionary processes, such a research agenda should contribute novel insights to speciation theory in general.


Asunto(s)
Biodiversidad , Plantas/anatomía & histología , Extinción Biológica , Especiación Genética , Genética de Población , Plantas/genética
14.
Ann Bot ; 119(8): 1319-1331, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369229

RESUMEN

Background and Aims: The ability to fix atmospheric nitrogen is thought to play an important role in the invasion success of legumes. Interactions between legumes and nitrogen-fixing bacteria (rhizobia) span a continuum of specialization, and promiscuous legumes are thought to have higher chances of forming effective symbioses in novel ranges. Using Australian Acacia species in South Africa, it was hypothesized that widespread and highly invasive species will be more generalist in their rhizobial symbiotic requirements and more effective in fixing atmospheric nitrogen compared with localized and less invasive species. Methods: To test these hypotheses, eight localized and 11 widespread acacias were examined using next-generation sequencing data for the nodulation gene, nodC , to compare the identity, species richness, diversity and compositional similarity of rhizobia associated with these acacias. Stable isotope analysis was also used to determine levels of nitrogen obtained from the atmosphere via symbiotic nitrogen fixation. Key Results: No differences were found in richness, diversity and community composition between localized and widespread acacias. Similarly, widespread and localized acacias did not differ in their ability to fix atmospheric nitrogen. However, for some species by site comparisons, significant differences in δ15N isotopic signatures were found, indicating differential symbiotic effectiveness between these species at specific localities. Conclusions: Overall, the results support recent findings that root nodule rhizobial diversity and community composition do not differ between acacias that vary in their invasiveness. Differential invasiveness of acacias in South Africa is probably linked to attributes such as differences in propagule pressure, reasons for (e.g. forestry vs. ornamental) and extent of, plantings in the country.


Asunto(s)
Fabaceae/microbiología , Especies Introducidas , Rhizobium/fisiología , Simbiosis , Australia , Fijación del Nitrógeno , Sudáfrica
15.
BMC Evol Biol ; 17(1): 72, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28274200

RESUMEN

BACKGROUND: The evolution of reproductive isolation between herbivorous insect populations is often initiated by shifts to novel host-plants, a process that underlies some of the best examples of ecological speciation. However, it is not well understood why host-shifts occur. Arguably the most common hypothesis is that host-shifts occur in response to competition, while a less frequently invoked hypothesis is that herbivores adapt locally to geographic differences in potential host-plant communities. Here we investigate whether geographic variation in host-plant availability is likely to have driven host-shifts in restio leafhoppers. We studied local adaptation of a camouflaged restio leafhopper species, Cephalelus uncinatus, to host-plants in the Restionaceae (restios); a family of plants with exceptional diversity in the anomalously species-rich Cape Floristic Region (CFR). To determine whether C. uncinatus experiences heterogeneous host communities across its range, we first quantified the degree of geographic overlap between C. uncinatus and each of its associated host-plant species. Then we quantified trait divergence (host preference, body size and colour) for three pairs of C. uncinatus populations found on different host-plant species differing in their degree of spatial overlap. Spectral reflectance was modelled in bird visual space to investigate whether body colour divergence in C. uncinatus corresponds to leaf sheath colour differences between restio species as perceived by potential predators. RESULTS: We demonstrate that C. uncinatus is forced to use different restio species in different regions because of turnover in available host species across its range. Comparisons between geographically separated populations were consistent with local adaptation: restio leafhoppers had preferences for local host-plants over alternative host-plants and matched local plants better in terms of size and colour. CONCLUSIONS: Spatial turnover in host-plant availability has likely facilitated host-shifts in C. uncinatus. Spatial turnover in host-plant availability may be an important driver of insect diversification in the CFR and globally.


Asunto(s)
Evolución Biológica , Hemípteros/fisiología , Animales , Especiación Genética , Herbivoria , Especificidad del Huésped , Magnoliopsida/parasitología , Filogeografía
16.
PLoS One ; 12(1): e0168033, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28076412

RESUMEN

Globally plant species richness is a significant predictor of insect richness. Whether this is the result of insect diversity responding directly to plant diversity, or both groups responding in similar ways to extrinsic factors, has been much debated. Here we assess this relationship in the Cape Floristic Region (CFR), a biodiversity hotspot. The CFR has higher plant diversity than expected from latitude (i.e., abiotic conditions), but very little is known about the diversity of insects residing in this region. We first quantify diversity relationships at multiple spatial scales for one of the dominant plant families in the CFR, the Restionaceae, and its associated insect herbivore community. Plant and insect diversity are significantly positively correlated at the local scales (10-50 m; 0.1-3 km), but not at the regional scales (15-20 km; 50-70 km). The local scale relationship remains significantly positively correlated even when accounting for the influence of extrinsic variables and other vegetation attributes. This suggests that the diversity of local insect assemblages may be more strongly influenced by plant species richness than by abiotic variables. Further, vegetation age and plant structural complexity also influenced insect richness. The ratio of insect species per plant species in the CFR is comparable to other temperate regions around the world, suggesting that the insect diversity of the CFR is high relative to other areas of the globe with similar abiotic conditions, primarily as a result of the unusually high plant diversity in the region.


Asunto(s)
Biodiversidad , Insectos , Modelos Biológicos , Plantas , Animales , Calor
17.
Mol Phylogenet Evol ; 107: 530-537, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27940332

RESUMEN

The Greater Cape Floristic Region (GCFR) in South Africa has been extensively investigated for its phenomenal angiosperm diversity. A key emergent pattern is the occurrence of older plant lineages in the southern Fynbos biome and younger lineages in the northern Succulent Karoo biome. We know practically nothing, however, about the evolutionary history of the animals that pollinate this often highly-specialized flora. In this study, we explore the evolutionary history of an important GCFR fly pollinator, Megapalpus capensis, and ask whether it exhibits broadly congruent genetic structuring and timing of diversification to flowering plants within these biomes. We find that the oldest M. capensis lineages originated in Fynbos during the Miocene, while younger Succulent Karoo lineages diverged in the Pliocene and correspond to the proposed age of this recent biome. A strong signature of population expansion is also recovered for flies in this arid biome, consistent with recent colonization. Our first investigation into the evolutionary history of GCFR pollinators thus supports a recent origin of the SK biome, as inferred from angiosperm phylogenies, and suggests that plants and pollinators may have co-diverged within this remarkable area.


Asunto(s)
Evolución Biológica , Dípteros/fisiología , Ecosistema , Flores/fisiología , Magnoliopsida/fisiología , Polinización/fisiología , Animales , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Demografía , Dípteros/genética , Sitios Genéticos , Variación Genética , Magnoliopsida/genética , Filogenia
18.
AoB Plants ; 82016.
Artículo en Inglés | MEDLINE | ID: mdl-27255514

RESUMEN

Establishing mutualistic interactions in novel environments is important for the successful establishment of some non-native plant species. These associations may, in turn, impact native species interaction networks as non-natives become dominant in their new environments. Using phylogenetic and ecological interaction network approaches we provide the first report of the structure of belowground legume-rhizobium interaction networks and how they change along a gradient of invasion (uninvaded, semi invaded and heavily invaded sites) by Australian Acacia species in South Africa's Cape Floristic Region. We found that native and invasive legumes interact with distinct rhizobial lineages, most likely due to phylogenetic uniqueness of native and invasive host plants. Moreover, legume-rhizobium interaction networks are not nested, but significantly modular with high levels of specialization possibly as a result of legume-rhizobium co-evolution. Although network topology remained constant across the invasion gradient, composition of bacterial communities associated with native legumes changed dramatically as acacias increasingly dominated the landscape. In stark contrast to aboveground interaction networks (e.g. pollination and seed dispersal) we show that invasive legumes do not infiltrate existing native legume-rhizobium networks but rather form novel modules. This absence of mutualist overlap between native and invasive legumes suggests the importance of co-invading rhizobium-acacia species complexes for Acacia invasion success, and argues against a ubiquitous role for the formation and evolutionary refinement of novel interactions.

19.
Biol Lett ; 12(6)2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27277954

RESUMEN

Global synthesis indicates that limitation of plant fecundity by pollen receipt (pollen limitation) is positively related to regional plant diversity and is higher for self-incompatible than self-compatible species. While self-incompatible species are always dependent on pollinating agents, self-compatible species may be pollinator-dependent or autofertile. This should cause variation in pollen limitation among self-compatible species, with lower pollen limitation in autofertile species because they do not depend on pollinators. We hypothesized that the intensity of pollen limitation in self-incompatible compared with pollinator-dependent self-compatible species should depend on whether pollen limitation is determined more by quantity than quality of pollen received. We compared pollen limitation between these three groups using a dataset of 70 biotically pollinated species from biodiverse regions of South Africa. Comparison with a global dataset indicated that pollen limitation in the South African biodiversity hotspots was generally comparable to other regions, despite expectations of higher pollen limitation based on the global plant diversity-pollen limitation relationship. Pollen limitation was lowest for autofertile species, as expected. It was also higher for pollinator-dependent self-compatible species than self-incompatible species, consistent with increased pollen-quality limitation in the former group due to negative consequences of pollinator-mediated self-pollination. However, there was a higher frequency of plants with zygomorphic flowers, which were also more pollen-limited, among pollinator-dependent self-compatible species. Thus, we could not attribute this difference in pollen limitation exclusively to a difference in pollen quality. Nevertheless, our results indicate that comparative studies should control for both pollinator dependence and self-incompatiblity when evaluating effects of other factors on pollen limitation.


Asunto(s)
Magnoliopsida/fisiología , Polen/fisiología , Polinización/fisiología , Autoincompatibilidad en las Plantas con Flores , Biodiversidad , Bases de Datos Factuales , Sudáfrica
20.
J Anim Ecol ; 85(4): 994-1003, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27119596

RESUMEN

Patterns of niche partitioning can result from local ecological interactions (e.g. interspecific competition) occurring within a contemporary time frame (realized niche partitioning). Alternatively, they may represent the end product of historical processes acting over long time frames (fundamental niche partitioning). Niche partitioning is often detected by analysing patterns of resource use within communities, but experiments are rarely conducted to test whether patterns of non-overlapping resource use reflect realized or fundamental niche partitioning. We studied a community of restio leafhoppers from the genus Cephalelus and their host plants, the Restionaceae (restios). We used network and experimental approaches to determine whether network modularity (a measure of niche partitioning within local communities) reflects fundamental or realized niche partitioning. Using a weighted modularity index for two party networks (e.g. insect-plant), we determined whether the network of this community is modular (i.e. consists of groups of species interacting strongly, with weak interactions between groups). We also aimed to identify specific Cephalelus - restio modules (groups). Using knowledge of module membership to design experiments, we tested whether Cephalelus species from two different modules, Cephalelus uncinatus and Cephalelus pickeri, prefer and perform better on restios from their own modules vs. restios from other modules. These experiments were performed under controlled conditions, eliminating the influences of competition and predation on host choices. The Cephalelus - restio community was modular, implying niche partitioning. Cephalelus also preferred and performed better on restios from their own modules in the absence of local contemporary factors. Most niche partitioning in the investigated Cephalelus community is not caused by local interactions, and thus, host use patterns represent fundamental niches. Our findings highlight the importance of understanding local community structure in the light of processes extrinsic to the local community context.


Asunto(s)
Biota , Hemípteros , Magnoliopsida , Animales , Ecosistema , Herbivoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...