Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38076969

RESUMEN

Current methods of storing explanted donor livers at 4°C in University of Wisconsin (UW) solution result in loss of graft function and ultimately leads to less-than-ideal outcomes post transplantation. Our lab has previously shown that supplementing UW solution with 35-kilodalton polyethylene glycol (PEG) has membrane stabilizing effects for cold stored primary rat hepatocytes in suspension. Expanding on past studies, we here investigate if PEG has the same beneficial effects in an adherent primary rat hepatocyte cold storage model. In addition, we investigated the extent of cold-induced apoptosis through treating cold-stored hepatocytes with pan caspase inhibitor emricasan. In parallel to storage at the current cold storage standard of 4°C, we investigated the effects of lowering the storage temperature to -4°C, at which the storage solution remains ice-free due to the supercooling phenomenon. We show the addition of 5% PEG to the storage medium significantly reduced the release of lactate dehydrogenase (LDH) in plated rat hepatocytes and a combinatorial treatment with emricasan maintains hepatocyte viability and morphology following recovery from cold storage. These results show that cold-stored hepatocytes undergo multiple mechanisms of cold-induced injury and that PEG and emricasan treatment in combination with supercooling may improve cell and organ preservation.

2.
Biophys Rev (Melville) ; 3(3): 031305, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36091931

RESUMEN

In the modern world, myocardial infarction is one of the most common cardiovascular diseases, which are responsible for around 18 million deaths every year or almost 32% of all deaths. Due to the detrimental effects of COVID-19 on the cardiovascular system, this rate is expected to increase in the coming years. Although there has been some progress in myocardial infarction treatment, translating pre-clinical findings to the clinic remains a major challenge. One reason for this is the lack of reliable and human representative healthy and fibrotic cardiac tissue models that can be used to understand the fundamentals of ischemic/reperfusion injury caused by myocardial infarction and to test new drugs and therapeutic strategies. In this review, we first present an overview of the anatomy of the heart and the pathophysiology of myocardial infarction, and then discuss the recent developments on pre-clinical infarct models, focusing mainly on the engineered three-dimensional cardiac ischemic/reperfusion injury and fibrosis models developed using different engineering methods such as organoids, microfluidic devices, and bioprinted constructs. We also present the benefits and limitations of emerging and promising regenerative therapy treatments for myocardial infarction such as cell therapies, extracellular vesicles, and cardiac patches. This review aims to overview recent advances in three-dimensional engineered infarct models and current regenerative therapeutic options, which can be used as a guide for developing new models and treatment strategies.

3.
Small ; 18(28): e2201330, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35670145

RESUMEN

Current biomarkers for myocardial infarction (MI) diagnosis are typically late markers released upon cell death, incapable of distinguishing between ischemic and reperfusion injury and can be symptoms of other pathologies. Circulating microRNAs (miRNAs) have recently been proposed as alternative biomarkers for MI diagnosis; however, detecting the changes in the human cardiac miRNA profile during MI is extremely difficult. Here, to study the changes in miRNA levels during acute MI, a heart-on-chip model with a cardiac channel, containing human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes in human heart decellularized matrix and collagen, and a vascular channel, containing hiPSC-derived endothelial cells, is developed. This model is exposed to anoxia followed by normoxia to mimic ischemia and reperfusion, respectively. Using a highly sensitive miRNA biosensor that the authors developed, the exact same increase in miR-1, miR-208b, and miR-499 levels in the MI-on-chip and the time-matched human blood plasma samples collected before and after ischemia and reperfusion, is shown. That the surface marker profile of exosomes in the engineered model changes in response to ischemic and reperfusion injury, which can be used as biomarkers to detect MI, is also shown. Hence, the MI-on-chip model developed here can be used in biomarker discovery.


Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , MicroARNs , Infarto del Miocardio , Daño por Reperfusión , Biomarcadores/metabolismo , Células Endoteliales/metabolismo , Exosomas/metabolismo , Humanos , Hipoxia/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/metabolismo , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Reperfusión , Daño por Reperfusión/diagnóstico
4.
Lab Chip ; 21(20): 3876-3887, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34546237

RESUMEN

Micro RNAs (miRNAs) have shown great potential as rapid and discriminating biomarkers for acute myocardial infarction (AMI) diagnosis. We have developed a multiplexed ion-exchange membrane-based miRNA (MIX·miR) preconcentration/sensing amplification-free platform for quantifying in parallel a panel of miRNAs, including miR-1, miR-208b, and miR-499, from the same plasma samples from: 1) reference subjects with no evident coronary artery disease (NCAD); 2) subjects with stable coronary artery disease (CAD); and 3) subjects experiencing ST-elevation myocardial infarction (STEMI) prior to (STEMI-pre) and following (STEMI-PCI) percutaneous coronary intervention. The picomolar limit of detection from raw plasma and 3-decade dynamic range of MIX·miR permits detection of the miRNA panel in untreated samples from disease patients and its precise standard curve, provided by large 0.1 to 1 V signals and eliminates individual sensor calibration. The use of molecular concentration feature reduces the assay time to less than 30 minutes and increases the detection sensitivity by bringing all targets close to the sensors. miR-1 was low for NCAD patients but more than one order of magnitude above the normal value for all samples from three categories (CAD, STEMI-pre, and STEMI-PCI) of patients with CAD. In fact, miR-1 expression levels of stable CAD, STEMI-pre and STEMI-PCI are each more than 10-fold higher than the previous class, in that order, well above the 95% confidence level of MIX·miR. Its overexpression estimate is significantly higher than the PCR benchmark. This suggests that, in contrast to protein biomarkers of myocardial injury, miR-1 appears to differentiate ischemia from both reperfusion injury and non-AMI CAD patients. The battery-operated MIX·miR can be a portable and low-cost AMI diagnostic device, particularly useful in settings where cardiac catheterization is not readily available to determine the status of coronary reperfusion.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , Infarto del Miocardio , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/genética , Humanos , MicroARNs/genética , Infarto del Miocardio/diagnóstico
5.
Gels ; 7(2)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208210

RESUMEN

The generation of 3D tissue constructs with multiple cell types and matching mechanical properties remains a challenge in cardiac tissue engineering. Recently, 3D bioprinting has become a powerful tool to achieve these goals. Decellularized extracellular matrix (dECM) is a common scaffold material due to providing a native biochemical environment. Unfortunately, dECM's low mechanical stability prevents usage for bioprinting applications alone. In this study, we developed bioinks composed of decellularized human heart ECM (dhECM) with either gelatin methacryloyl (GelMA) or GelMA-methacrylated hyaluronic acid (MeHA) hydrogels dual crosslinked with UV light and microbial transglutaminase (mTGase). We characterized the bioinks' mechanical, rheological, swelling, printability, and biocompatibility properties. Composite GelMA-MeHA-dhECM (GME) hydrogels demonstrated improved mechanical properties by an order of magnitude compared to the GelMA-dhECM (GE) hydrogels. All hydrogels were extrudable and compatible with human induced pluripotent stem cell derived cardiomyocytes (iCMs) and human cardiac fibroblasts (hCFs). Tissue-like beating of the printed constructs with striated sarcomeric alpha-actinin and connexin 43 expression was observed. The order of magnitude difference between the elastic modulus of these hydrogel composites offers applications in in vitro modeling of the myocardial infarct boundary. Here, as a proof of concept, we created an infarct boundary region with control over the mechanical properties along with the cellular and macromolecular content through printing iCMs with GE bioink and hCFs with GME bioink.

6.
Stem Cells ; 39(2): 170-182, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33159685

RESUMEN

Heart transplantation is a life-saving therapy for end-stage organ failure. Organ deterioration during transportation limits storage to 4 hours, limiting hearts available. Approaches ameliorating organ damage could increase the number of hearts acceptable for transplantation. Prior studies show that adipose-derived stem/stromal cell secretome (ASC-S) rescues tissues from postischemic damage in vivo. This study tested whether ASC-S preserved the function of mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes (iCM) exposed to organ transportation and transplantation conditions. Hearts were subjected to cold University of Wisconsin (UW) cardioplegic solution ± ASC-S for 6 hours followed by analysis using the Langendorff technique. In parallel, the effects of ASC-S on the recovery of iCM from UW solution were examined when provided either during or after cold cardioplegia. Exposure of hearts and iCM to UW deteriorated contractile activity and caused cell apoptosis, worsening in iCM as a function of exposure time; these were ameliorated by augmenting with ASC-S. Silencing of superoxide dismutase 3 and catalase expression prior to secretome generation compromised the ASC-S cardiomyocyte-protective effects. In this study, a novel in vitro iCM model was developed to complement a rodent heart model in assessing efficacy of approaches to improve cardiac preservation. ASC-S displays strong cardioprotective activity on iCM either with or following cold cardioplegia. This effect is associated with ASC-S-mediated cellular clearance of reactive oxygen species. The effect of ASC-S on the temporal recovery of iCM function supports the possibility of lengthening heart storage by augmenting cardioplegic transport solution with ASC-S, expanding the pool of hearts for transplantation.


Asunto(s)
Soluciones Cardiopléjicas/toxicidad , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Soluciones Preservantes de Órganos/toxicidad , Recuperación de la Función/fisiología , Adenosina/toxicidad , Alopurinol/toxicidad , Animales , Glutatión/toxicidad , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Insulina/toxicidad , Preparación de Corazón Aislado/métodos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Rafinosa/toxicidad , Recuperación de la Función/efectos de los fármacos
7.
Acta Biomater ; 106: 1-21, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32045679

RESUMEN

The mechanisms behind cancer initiation and progression are not clear. Therefore, development of clinically relevant models to study cancer biology and drug response in tumors is essential. In vivo models are very valuable tools for studying cancer biology and for testing drugs; however, they often suffer from not accurately representing the clinical scenario because they lack either human cells or a functional immune system. On the other hand, two-dimensional (2D) in vitro models lack the three-dimensional (3D) network of cells and extracellular matrix (ECM) and thus do not represent the tumor microenvironment (TME). As an alternative approach, 3D models have started to gain more attention, as such models offer a platform with the ability to study cell-cell and cell-material interactions parametrically, and possibly include all the components present in the TME. Here, we first give an overview of the breast cancer TME, and then discuss the current state of the pre-clinical breast cancer models, with a focus on the engineered 3D tissue models. We also highlight two engineering approaches that we think are promising in constructing models representative of human tumors: 3D printing and microfluidics. In addition to giving basic information about the TME in the breast tissue, this review article presents the state-of-the-art tissue engineered breast cancer models. STATEMENT OF SIGNIFICANCE: Involvement of biomaterials and tissue engineering fields in cancer research enables realistic mimicry of the cell-cell and cell-extracellular matrix (ECM) interactions in the tumor microenvironment (TME), and thus creation of better models that reflect the tumor response against drugs. Engineering the 3D in vitro models also requires a good understanding of the TME. Here, an overview of the breast cancer TME is given, and the current state of the pre-clinical breast cancer models, with a focus on the engineered 3D tissue models is discussed. This review article is useful not only for biomaterials scientists aiming to engineer 3D in vitro TME models, but also for cancer researchers willing to use these models for studying cancer biology and drug testing.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Modelos Biológicos , Ingeniería de Tejidos/métodos , Microambiente Tumoral/fisiología , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos , Microfluídica/métodos , Impresión Tridimensional
8.
Matrix Biol ; 85-86: 173-188, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31108197

RESUMEN

Mammalian hearts have regenerative potential restricted to early neonatal stage and lost within seven days after birth. Carbohydrates exclusive to cardiac neonatal tissue may be key regulators of regenerative potential. Although cell surface and extracellular matrix glycosylation are known modulators of tissue and cellular function and development, variation in cardiac glycosylation from neonatal tissue to maturation has not been fully examined. In this study, glycosylation of the adult rat cardiac ventricle showed no variability between the two strains analysed, nor were there any differences between the glycosylation of the right or left ventricle using lectin histochemistry and microarray profiling. However, in the Sprague-Dawley strain, neonatal cardiac glycosylation in the left ventricle differed from adult tissues using mass spectrometric analysis, showing a higher expression of high mannose structures and lower expression of complex N-linked glycans in the three-day-old neonatal tissue. Man6GlcNAc2 was identified as the main high mannose N-linked structure that was decreased in adult while higher expression of sialylated N-linked glycans and lower core fucosylation for complex structures were associated with ageing. The occurrence of mucin core type 2 O-linked glycans was reduced in adult and one sulfated core type 2 O-linked structure was identified in neonatal tissue. Interestingly, O-linked glycans from mature tissue contained both N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), while all sialylated N-linked glycans detected contained only Neu5Ac. As glycans are associated with intracellular communication, the specific neonatal structures found may indicate a role for glycosylation in the neonatal associated regenerative capacity of the mammalian heart. New strategies targeting tissue glycosylation could be a key contributor to achieve an effective regeneration of the mammalian heart in pathological scenarios such as myocardial infarction.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Lectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Oligosacáridos/metabolismo , Análisis de Matrices Tisulares/métodos , Animales , Animales Recién Nacidos , Fucosa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicosilación , Espectrometría de Masas , Ácido N-Acetilneuramínico/química , Ácidos Neuramínicos/química , Ratas , Ratas Sprague-Dawley
9.
Phytopathology ; 110(1): 194-205, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31502520

RESUMEN

Tobacco mosaic virus (TMV) is an extensively studied RNA virus known to infect tobacco (Nicotiana tabacum) and other solanaceous crops. TMV has been classified as a seedborne virus in tobacco, with infection of developing seedlings thought to occur from contact with the TMV-infected seed coat. The mechanism of TMV transmission through seed was studied in seed of the K 326 cultivar of flue-cured tobacco. Cross pollinations were performed to determine the effect of parental tissue on TMV infection in seed. Dissection of individual tobacco seeds into seed coat, endosperm, and embryo was performed to determine TMV location within a seed, while germination tests and separation of the developing seedling into seed coat, roots, and cotyledons were conducted to estimate the percent transmission of TMV. A reverse-transcriptase quantitative PCR (RT-qPCR) assay was developed and used to determine TMV concentrations in individual seed harvested from pods that formed on plants from TMV-infected and noninfected crosses. The results showed maternal transmission of TMV to tobacco seed and seedlings that developed from infected seed, not paternal transmission. RT-qPCR and endpoint PCR assays were also conducted on the separated seed coat, endosperm, and embryo of individual seed and separated cotyledons, roots, and seed coats of individual seedlings that developed from infected tobacco seed to identify the location of the virus in the seed and the subsequent path the virus takes to infect the developing seedling. RT-qPCR and endpoint PCR assay results showed evidence of TMV infection in the endosperm and embryo, as well as in the developing seedling roots and cotyledons within 10 days of initiating seed germination. To our knowledge, this is the first report of TMV being detected in embryos of tobacco seed, demonstrating that TMV is seedborne and seed-transmitted in flue-cured tobacco.


Asunto(s)
Nicotiana , Reacción en Cadena en Tiempo Real de la Polimerasa , Virus del Mosaico del Tabaco , Enfermedades de las Plantas/virología , Plantones/virología , Semillas/virología , Nicotiana/virología , Virus del Mosaico del Tabaco/genética , Virus del Mosaico del Tabaco/fisiología
10.
Circ Res ; 125(9): 805-820, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31451038

RESUMEN

RATIONALE: Even in antiretroviral therapy-treated patients, HIV continues to play a pathogenic role in cardiovascular diseases. A possible cofactor may be persistence of the early HIV response gene Nef, which we have demonstrated recently to persist in the lungs of HIV+ patients on antiretroviral therapy. Previously, we have reported that HIV strains with Nef, but not Nef-deleted HIV strains, cause endothelial proinflammatory activation and apoptosis. OBJECTIVE: To characterize mechanisms through which HIV-Nef leads to the development of cardiovascular diseases using ex vivo tissue culture approaches as well as interventional experiments in transgenic murine models. METHODS AND RESULTS: Extracellular vesicles derived from both peripheral blood mononuclear cells and plasma from HIV+ patient blood samples induced human coronary artery endothelial cells dysfunction. Plasma-derived extracellular vesicles from antiretroviral therapy+ patients who were HIV-Nef+ induced significantly greater endothelial apoptosis compared with HIV-Nef-plasma extracellular vesicles. Both HIV-Nef expressing T cells and HIV-Nef-induced extracellular vesicles increased transfer of cytosol and Nef protein to endothelial monolayers in a Rac1-dependent manner, consequently leading to endothelial adhesion protein upregulation and apoptosis. HIV-Nef induced Rac1 activation also led to dsDNA breaks in endothelial colony forming cells, thereby resulting in endothelial colony forming cell premature senescence and endothelial nitric oxide synthase downregulation. These Rac1-dependent activities were characterized by NOX2-mediated reactive oxygen species production. Statin treatment equally inhibited Rac1 inhibition in preventing or reversing all HIV-Nef-induction abnormalities assessed. This was likely because of the ability of statins to block Rac1 prenylation as geranylgeranyl transferase inhibitors were effective in inhibiting HIV-Nef-induced reactive oxygen species formation. Finally, transgenic expression of HIV-Nef in endothelial cells in a murine model impaired endothelium-mediated aortic ring dilation, which was then reversed by 3-week treatment with 5 mg/kg atorvastatin. CONCLUSIONS: These studies establish a mechanism by which HIV-Nef persistence despite antiretroviral therapy could contribute to ongoing HIV-related vascular dysfunction, which may then be ameliorated by statin treatment.


Asunto(s)
Células Endoteliales/metabolismo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Adulto , Anciano , Animales , Células Endoteliales/efectos de los fármacos , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Resultado del Tratamiento
11.
J Thorac Cardiovasc Surg ; 154(5): 1756-1762, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28651938

RESUMEN

OBJECTIVE: Congenital bicuspid aortic valve (BAV) is distinctly associated with the development of ascending aortopathy in adulthood, portending risk of both ascending aortic aneurysm and dissection. Our previous work implicated deficiency in oxidative stress response as a mediator of the BAV-associated aortopathy. We hypothesize that reactive oxygen species generation invokes elevated local oxidative tissue damage in ascending aorta of patients with BAV. METHODS: Ascending aortic specimens were obtained from patients undergoing elective aortic replacement and/or aortic valve replacement and during heart transplant operations. Levels of superoxide anion were measured via high-pressure liquid chromatography-based detection of 2-hydroxyethidium in aortic specimens. Lipid peroxidation and enzymatic activity of superoxide dismutase and peroxidase were quantified in aortic specimens. RESULTS: Superoxide anion production was elevated in aortic specimens from patients with nonaneurysmal BAV (n = 59) compared with specimens from patients with the morphologically normal tricuspid aortic valve (TAV, n = 38). Total superoxide dismutase activity was similar among aortic specimens from patients with TAV versus BAV (n = 27 and 26, respectively), whereas peroxidase activity was increased in aortic specimens from patients with BAV compared with specimens from patients with TAV (n = 14 for both groups). Lipid peroxidation was elevated in aortic specimens from BAV patients compared with TAV patients (n = 14 and 11, respectively). CONCLUSIONS: Superoxide anion accumulation and increased lipid peroxidation demonstrate that, despite increased peroxidase activity, the ascending aortopathy of patients with BAV involves oxidative stress. In addition, the absence of increased superoxide dismutase activity in BAV specimens indicates a deficiency in antioxidant defense. This suggests that the characteristic smooth muscle cell loss observed in BAV aortopathy may be a consequence of superoxide-mediated cell damage.


Asunto(s)
Aorta , Aneurisma de la Aorta , Válvula Aórtica/anomalías , Enfermedades de las Válvulas Cardíacas/complicaciones , Estrés Oxidativo , Túnica Media , Anciano , Aorta/metabolismo , Aorta/patología , Aneurisma de la Aorta/etiología , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/patología , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Enfermedad de la Válvula Aórtica Bicúspide , Cromatografía Liquida/métodos , Etidio/análogos & derivados , Etidio/análisis , Femenino , Enfermedades de las Válvulas Cardíacas/metabolismo , Enfermedades de las Válvulas Cardíacas/patología , Humanos , Peroxidación de Lípido , Masculino , Persona de Mediana Edad , Superóxido Dismutasa/análisis , Superóxidos/análisis , Túnica Media/metabolismo , Túnica Media/patología
12.
Stem Cell Reports ; 9(1): 292-303, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28552602

RESUMEN

In the microcirculation, pericytes are believed to function as mesenchymal stromal cells (MSCs). We hypothesized that the vasa vasorum harbor progenitor cells within the adventitia of human aorta. Pericytes, endothelial progenitor cells, and other cell subpopulations were detected among freshly isolated adventitial cells using flow cytometry. Purified cultured pericytes were enriched for the MSC markers CD105 and CD73 and depleted of the endothelial markers von Willebrand factor and CD31. Cultured pericytes were capable of smooth muscle lineage progression including inducible expression of smooth muscle myosin heavy chain, calponin, and α-smooth muscle actin, and adopted a spindle shape. Pericytes formed spheroids when cultured on Matrigel substrates and peripherally localized with branching endothelial cells in vitro. Our results indicate that the vasa vasorum form a progenitor cell niche distinct from other previously described progenitor populations in human adventitia. These findings could have important implications for understanding the complex pathophysiology of human aortic disease.


Asunto(s)
Aorta/citología , Células Progenitoras Endoteliales/citología , Pericitos/citología , Vasa Vasorum/citología , 5'-Nucleotidasa/análisis , Adulto , Adventicia/citología , Anciano , Células Cultivadas , Endoglina/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Nicho de Células Madre , Factor de von Willebrand/análisis
13.
Biomicrofluidics ; 11(2): 024105, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28396709

RESUMEN

The heart wall tissue, or the myocardium, is one of the main targets in cardiovascular disease prevention and treatment. Animal models have not been sufficient in mimicking the human myocardium as evident by the very low clinical translation rates of cardiovascular drugs. Additionally, current in vitro models of the human myocardium possess several shortcomings such as lack of physiologically relevant co-culture of myocardial cells, lack of a 3D biomimetic environment, and the use of non-human cells. In this study, we address these shortcomings through the design and manufacture of a myocardium-on-chip (MOC) using 3D cell-laden hydrogel constructs and human induced pluripotent stem cell (hiPSC) derived myocardial cells. The MOC utilizes 3D spatially controlled co-culture of hiPSC derived cardiomyocytes (iCMs) and hiPSC derived endothelial cells (iECs) integrated among iCMs as well as in capillary-like side channels, to better mimic the microvasculature seen in native myocardium. We first fully characterized iCMs using immunostaining, genetic, and electrochemical analysis and iECs through immunostaining and alignment analysis to ensure their functionality, and then seeded these cells sequentially into the MOC device. We showed that iECs could be cultured within the microfluidic device without losing their phenotypic lineage commitment, and align with the flow upon physiological level shear stresses. We were able to incorporate iCMs within the device in a spatially controlled manner with the help of photocrosslinkable polymers. The iCMs were shown to be viable and functional within the device up to 7 days, and were integrated with the iECs. The iCMs and iECs in this study were derived from the same hiPSC cell line, essentially mimicking the myocardium of an individual human patient. Such devices are essential for personalized medicine studies where the individual drug response of patients with different genetic backgrounds can be tested in a physiologically relevant manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...