Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 1(1): 45, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938625

RESUMEN

The amphibian skin microbiome has been the focus of numerous studies because of the protective effects that some bacteria provide against the pathogenic fungus Batrachochytrium dendrobatidis, which has caused a global panzootic among amphibians. However, the mechanisms driving community structure and function in the amphibian skin microbiome are still poorly understood, and longitudinal analyses of the skin microbiome have not yet been conducted in wild populations. In this study, we investigate longitudinal patterns in the skin microbiome of 19 individually marked adult frogs from two wild populations of the endangered Sierra Nevada yellow-legged frog (Rana sierrae), sampled over the course of 2 years. We found that individuals with low bacterial diversity (dominated by order Burkhorderiales) had significantly more stable bacterial communities than those with higher diversity. Amplicon sequence variants (ASVs) with high relative abundance were significantly less transient than those with low relative abundance, and ASVs with intermediate-level relative abundances experienced the greatest volatility over time. Based on these results, we suggest that efforts to develop probiotic treatments to combat B. dendrobatidis should focus on bacteria that are found at high relative abundances in some members of a population, as these strains are more likely to persist and remain stable in the long term.

2.
Microb Ecol ; 78(1): 257-267, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30467714

RESUMEN

Microbial symbionts are increasingly recognized as playing a critical role in organismal health across a wide range of hosts. Amphibians are unique hosts in that their skin helps to regulate the exchange of water, ions, and gases, and it plays an active role in defense against pathogens through the synthesis of anti-microbial peptides. The microbiome of amphibian skin includes a diverse community of bacteria known to defend against pathogens, including the global pandemic lineage of Batrachochytrium dendrobatidis associated with mass amphibian die-offs. The relative influence of host phylogeny and environment in determining the composition of the amphibian skin microbiome remains poorly understood. We collected skin swabs from montane amphibians in Mexico and Guatemala, focusing on two genera of plethodontid salamanders and one genus of frogs. We used high throughput sequencing to characterize the skin bacterial microbiome and tested the impact of phylogeny and habitat on bacterial diversity. Our results show that phylogenetic history strongly influences the diversity and community structure of the total bacterial microbiome at higher taxonomic levels (between orders), but on lower scales (within genera and species), the effect of habitat predominates. These results add to a growing consensus that habitat exerts a strong effect on microbiome structure and composition, particularly at shallow phylogenetic scales.


Asunto(s)
Anfibios/microbiología , Bacterias/aislamiento & purificación , Microbiota , Filogenia , Piel/microbiología , Anfibios/clasificación , Animales , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Guatemala , México
3.
Mol Ecol ; 28(1): 127-140, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30506592

RESUMEN

The fungal pathogen Batrachochytrium dendrobatidis (Bd) infects the skin of amphibians and has caused severe declines and extinctions of amphibians globally. In this study, we investigate the interaction between Bd and the bacterial skin microbiome of the endangered Sierra Nevada yellow-legged frog, Rana sierrae, using both culture-dependent and culture-independent methods. Samples were collected from two populations of R. sierrae that likely underwent Bd epizootics in the past, but that continue to persist with Bd in an enzootic disease state, and we address the hypothesis that such "persistent" populations are aided by mutualistic skin microbes. Our 16S rRNA metabarcoding data reveal that the skin microbiome of highly infected juvenile frogs is characterized by significantly reduced species richness and evenness, and by strikingly lower variation between individuals, compared to juveniles and adults with lower infection levels. Over 90% of DNA sequences from the skin microbiome of highly infected frogs were derived from bacteria in a single order, Burkholderiales, compared to just 54% in frogs with lower infection levels. In a culture-dependent Bd inhibition assay, the bacterial metabolites we evaluated all inhibited the growth of Bd. Together, these results illustrate the disruptive effects of Bd infection on host skin microbial community structure and dynamics, and suggest possible avenues for the development of anti-Bd probiotic treatments.


Asunto(s)
Anfibios/microbiología , Bacterias/patogenicidad , Piel/microbiología , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Variación Genética , Interacciones Huésped-Patógeno/genética
4.
Ecohealth ; 14(2): 285-295, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28439781

RESUMEN

Epizootic disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) is a major driver of amphibian declines, yet many amphibians declined before the pathogen was described. The Relict Leopard Frog, Rana onca (=Lithobates onca), was nearly extinct, with the exception of populations within a few geothermal springs. Growth of Bd, however, is limited by high water temperature, and geothermal springs may have provided refuge during outbreaks of chytridiomycosis. We conducted field surveys and laboratory experiments to assess the susceptibility of R. onca to Bd. In the field, we found Bd at one of the two areas where remnant populations of R. onca still occur, but not in the other. In the laboratory, we infected juvenile frogs from these two areas with two hypervirulent Bd isolates associated with declines in other ranid species. In our experiments, these Bd isolates did not affect survivorship of R. onca and most infections (64%) were cleared by the end of the experiments. We propose that R. onca either has inherent resistance to Bd or has recently evolved such resistance. These results may be important for conservation efforts aimed at establishing new populations of R. onca across a landscape where Bd exists. Resistance, however, varies among life stages, and we also did not assess Bd from the local environment. We caution that the resistance we observed for young frogs under laboratory conditions may not translate to the situation for R. onca in the wild.


Asunto(s)
Quitridiomicetos/patogenicidad , Micosis/veterinaria , Rana pipiens , Animales , Calor , Dinámica Poblacional , Ranidae
5.
Ecohealth ; 13(1): 145-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26493624

RESUMEN

Batrachochytrium dendrobatidis (Bd), an amphibian fungal pathogen, has infected >500 species and caused extinctions or declines in >200 species worldwide. Despite over a decade of research, little is known about its invasion biology. To better understand this, we conducted a museum specimen survey (1910-1997) of Bd in amphibians on 11 California islands and found a pattern consistent with the emergence of Bd epizootics on the mainland, suggesting that geographic isolation did not prevent Bd invasion. We propose that suitable habitat, host diversity, and human visitation overcome isolation from the mainland and play a role in Bd invasion.


Asunto(s)
Anfibios/microbiología , Quitridiomicetos/aislamiento & purificación , Enfermedades Transmisibles Emergentes/microbiología , Islas , Micosis/microbiología , Zoonosis/microbiología , Animales , California , Enfermedades Transmisibles Emergentes/veterinaria , Micosis/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...