Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 37614, 2016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27876881

RESUMEN

Recent advances of ultrafast spectroscopy allow the capture of an entire ultrafast signal waveform in a single probe shot, which greatly reduces the measurement time and opens the door for the spectroscopy of unrepeatable phenomena. However, most single-shot detection schemes rely on two-dimensional detectors, which limit the repetition rate of the measurement and can hinder real-time visualization and manipulation of signal waveforms. Here, we demonstrate a new method to circumvent these difficulties and to greatly simplify the detection setup by using a long, single-mode optical fiber and a fast photodiode. Initially, a probe pulse is linearly chirped (the optical frequency varies linearly across the pulse in time), and the temporal profile of an ultrafast signal is then encoded in the probe spectrum. The probe pulse and encoded temporal dynamics are further chirped to nanosecond time scales using the dispersion in the optical fiber, thus, slowing down the ultrafast signal to time scales easily recorded with fast detectors and high-bandwidth electronics. We apply this method to three distinct ultrafast experiments: investigating the power dependence of the Kerr signal in LiNbO3, observing an irreversible transmission change of a phase change material, and capturing terahertz waveforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA