Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biodivers Data J ; 11: e109439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078294

RESUMEN

Tens of millions of images from biological collections have become available online over the last two decades. In parallel, there has been a dramatic increase in the capabilities of image analysis technologies, especially those involving machine learning and computer vision. While image analysis has become mainstream in consumer applications, it is still used only on an artisanal basis in the biological collections community, largely because the image corpora are dispersed. Yet, there is massive untapped potential for novel applications and research if images of collection objects could be made accessible in a single corpus. In this paper, we make the case for infrastructure that could support image analysis of collection objects. We show that such infrastructure is entirely feasible and well worth investing in.

3.
Int J Biometeorol ; 67(10): 1509-1522, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37507579

RESUMEN

The number and diversity of phenological studies has increased rapidly in recent years. Innovative experiments, field studies, citizen science projects, and analyses of newly available historical data are contributing insights that advance our understanding of ecological and evolutionary responses to the environment, particularly climate change. However, many phenological data sets have peculiarities that are not immediately obvious and can lead to mistakes in analyses and interpretation of results. This paper aims to help researchers, especially those new to the field of phenology, understand challenges and practices that are crucial for effective studies. For example, researchers may fail to account for sampling biases in phenological data, struggle to choose or design a volunteer data collection strategy that adequately fits their project's needs, or combine data sets in inappropriate ways. We describe ten best practices for designing studies of plant and animal phenology, evaluating data quality, and analyzing data. Practices include accounting for common biases in data, using effective citizen or community science methods, and employing appropriate data when investigating phenological mismatches. We present these best practices to help researchers entering the field take full advantage of the wealth of available data and approaches to advance our understanding of phenology and its implications for ecology.


Asunto(s)
Cambio Climático , Árboles , Animales , Humanos , Estaciones del Año , Recolección de Datos , Voluntarios
4.
Trends Ecol Evol ; 38(6): 485-489, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37088666

RESUMEN

Amidst attention towards improving equality, inclusivity, and diversity, citizen science is woefully anachronistic in its name. There is a critical need for this field to distance itself from the exclusionary nature of the term 'citizen'. We provide reasoning for abandoning this term and an outline for adopting a new name.


Asunto(s)
Ciencia Ciudadana , Humanos , Participación de la Comunidad
5.
Ecology ; 104(1): e3846, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36199230

RESUMEN

Advancing spring phenology is a well documented consequence of anthropogenic climate change, but it is not well understood how climate change will affect the variability of phenology year to year. Species' phenological timings reflect the adaptation to a broad suite of abiotic needs (e.g., thermal energy) and biotic interactions (e.g., predation and pollination), and changes in patterns of variability may disrupt those adaptations and interactions. Here, we present a geographically and taxonomically broad analysis of phenological shifts, temperature sensitivity, and changes in interannual variability encompassing nearly 10,000 long-term phenology time series representing more than 1000 species across much of the Northern Hemisphere. We show that the timings of leaf-out, flowering, insect first-occurrence, and bird arrival were the most sensitive to temperature variation and have advanced at the fastest pace for early-season species in colder and less seasonal regions. We did not find evidence for changing variability in warmer years in any phenophase groups, although leaf-out and flower phenology have become moderately but significantly less variable over time. Our findings suggest that climate change has not to this point fundamentally altered the patterns of interannual phenological variability.


Asunto(s)
Cambio Climático , Flores , Hojas de la Planta , Estaciones del Año , Temperatura
6.
Biol Conserv ; 276: 109788, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36408461

RESUMEN

The COVID-19 pandemic is stimulating improvements in remote access and use of technology in conservation-related programs and research. In many cases, organizations have intended for remote engagement to benefit groups that have been marginalized in the sciences. But are they? It is important to consider how remote access affects social justice in conservation biology-i.e., the principle that all people should be equally respected and valued in conservation organizations, programs, projects, and practices. To support such consideration, we describe a typology of justice-oriented principles that can be used to examine social justice in a range of conservation activities. We apply this typology to three conservation areas: (1) remote access to US national park educational programs and data; (2) digitization of natural history specimens and their use in conservation research; and (3) remote engagement in conservation-oriented citizen science. We then address the questions: Which justice-oriented principles are salient in which conservation contexts or activities? How can those principles be best realized in those contexts or activities? In each of the three areas we examined, remote access increased participation, but access and benefits were not equally distributed and unanticipated consequences have not been adequately addressed. We identify steps that can and are being taken to advance social justice in conservation, such as assessing programs to determine if they are achieving their stated social justice-oriented aims and revising initiatives as needed. The framework that we present could be used to assess the social justice dimensions of many conservation programs, institutions, practices, and policies.

7.
Bioscience ; 72(10): 978-987, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36196222

RESUMEN

The early twenty-first century has witnessed massive expansions in availability and accessibility of digital data in virtually all domains of the biodiversity sciences. Led by an array of asynchronous digitization activities spanning ecological, environmental, climatological, and biological collections data, these initiatives have resulted in a plethora of mostly disconnected and siloed data, leaving to researchers the tedious and time-consuming manual task of finding and connecting them in usable ways, integrating them into coherent data sets, and making them interoperable. The focus to date has been on elevating analog and physical records to digital replicas in local databases prior to elevating them to ever-growing aggregations of essentially disconnected discipline-specific information. In the present article, we propose a new interconnected network of digital objects on the Internet-the Digital Extended Specimen (DES) network-that transcends existing aggregator technology, augments the DES with third-party data through machine algorithms, and provides a platform for more efficient research and robust interdisciplinary discovery.

9.
Ecology ; 103(5): e3646, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35076936

RESUMEN

Concord, Massachusetts, USA has served as an active location for phenological observations since philosopher and naturalist Henry David Thoreau began recording plant and animal occurrence and phenology in 1851. Since that time, numerous naturalists, scientists, and researchers have continued this tradition, creating an invaluable time series of 758 species in a single location. In total, 13,441 phenological records, spanning 118 years, now exist, with observations of many species ongoing. Relative abundance data for an additional 200 plant species is also provided. Thoreau's published journals and records in Special Collections libraries at the Concord Free Public Library, Harvard University, Peabody Essex Museum, and Morgan Library and Museum provide insight into his methods of routinely walking around Walden Pond, through natural areas, and within the town of Concord, seeking the first leaf or flower on plants, seasonal observations of migratory birds, and fruit maturation times. Several amateur naturalists, and most recently the present research group, have followed this method of regularly searching Concord for the earliest signs of seasonal events, visiting many of the same locations including Walden Pond, the site made famous by Thoreau. While Thoreau's observations were initially made out of a curious desire to document the natural world, these data have led to dozens to contemporary studies, addressing timely issues such as climate change, conservation, ecology, and invasive species. This time series of data, initiated by Thoreau and continued by others, has resulted in dozens of peer-reviewed publications, a popular science book, and numerous educational and outreach opportunities. These data grow increasingly valuable with time and as new and creative studies are undertaken with Thoreau's historic records. No copyright restrictions apply to the use of this data set other than citing this publication.


Asunto(s)
Flores , Plantas , Animales , Aves , Cambio Climático , Humanos , Massachusetts , Hojas de la Planta , Estaciones del Año
10.
Am J Bot ; 108(11): 2112-2126, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34755895

RESUMEN

Plant phenology research has surged in recent decades, in part due to interest in phenological sensitivity to climate change and the vital role phenology plays in ecology. Many local-scale studies have generated important findings regarding the physiology, responses, and risks associated with shifts in plant phenology. By comparison, our understanding of regional- and global-scale phenology has been largely limited to remote sensing of green-up without the ability to differentiate among plant species. However, a new generation of analytical tools and data sources-including enhanced remote sensing products, digitized herbarium specimen data, and public participation in science-now permits investigating patterns and drivers of phenology across extensive taxonomic, temporal, and spatial scales, in an emerging field that we call macrophenology. Recent studies have highlighted how phenology affects dynamics at broad scales, including species interactions and ranges, carbon fluxes, and climate. At the cusp of this developing field of study, we review the theoretical and practical advances in four primary areas of plant macrophenology: (1) global patterns and shifts in plant phenology, (2) within-species changes in phenology as they mediate species' range limits and invasions at the regional scale, (3) broad-scale variation in phenology among species leading to ecological mismatches, and (4) interactions between phenology and global ecosystem processes. To stimulate future research, we describe opportunities for macrophenology to address grand challenges in each of these research areas, as well as recently available data sources that enhance and enable macrophenology research.


Asunto(s)
Cambio Climático , Ecosistema , Plantas , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA