Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(50): 47954-47963, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144086

RESUMEN

To enhance the optical limiting behavior triggered by nonlinear absorption (NA), wide-band gap MnO2 nanoparticles were incorporated into polyvinylpyrrolidone (PVP) polymer nanofibers at various concentrations. SEM images of the composite nanofibers showed that MnO2 nanoparticles are well entrapped in the nanofibers. With an increase in MnO2 nanofiller concentration, a widened optical band gap energy and an increased Urbach energy were observed. As the concentration of MnO2 nanofiller in PVP increased, the NA behavior became more pronounced but weakened with higher input intensity. This behavior was attributed to the filling of the localized defect states by one photon absorption (OPA). The NA mechanisms of the composite nanofibers were examined, considering their band gap energies and localized defect states. Although all of the composite nanofibers had OPA, sequential/simultaneous two photon absorption (TPA), and excited state absorption mechanisms, the higher concentration of the MnO2 nanofiller led to stronger NA behavior due to its more defective structure. The highest optical limiting behavior was observed for composite nanofibers with the highest concentration of MnO2 nanofiller. The results obtained show that these composite nanofibers with a high linear transmittance and an extended band gap energy can be used in optoelectronic applications that can operate in a wide spectral range. Furthermore, their robust NA behavior, coupled with their promising optical limiting characteristics, positions them as strong contenders for effective optical limiting applications.

2.
Phys Chem Chem Phys ; 25(46): 31667-31682, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37966808

RESUMEN

Herein, a spiro rhodamine (Rho)-thionated naphthalimide (NIS) electron donor-acceptor orthogonal dyad (Rho-NIS) was prepared to study the formation of a long-lived charge separation (CS) state via the electron spin control approach. The transient absorption (TA) spectra of Rho-NIS indicated that the intersystem crossing (ISC) occurs within 7-42 ps to produce the 3NIS state via the spin orbit coupling ISC (SOC-ISC). The energy order of 3CS (2.01 eV in n-hexane, HEX) and 3LE states (1.68 eV in HEX) depended on the solvent polarity. The 3NIS state having n-π* character and a lifetime of 0.38 µs was observed for Rho-NIS in toluene (TOL). Alternatively, in acetonitrile (ACN), the long-lived 3CS state (0.21 µs) with a high CS state quantum yield (ΦCS, 97%) was produced with the 3NIS state as the precursor and the CS took 134 ps. On the contrary, in the case of the reference Rho-naphthalimide (NI) Rho-NI dyad without thionation of its carbonyl group, a long-lived CS state (0.94 µs) with a high energy level (ECS = 2.12 eV) was generated even in HEX with a lower ΦCS (49%). In the presence of an acid, the Rho unit in the Rho-NIS adopted an open form (Rho-o) and the 3NIS state was produced within 24-47 ps with the 1Rho-o state as the precursor. Subsequently, slow intramolecular triplet-triplet energy transfer (TTET, 0.11-0.60 µs) produced the 3Rho-o state (9.4-13.6 µs). According to the time-resolved electron paramagnetic resonance (TREPR) spectra of NIS-NH2, the zero-field splitting (ZFS) parameter |D| and E of the triplet state were determined to be 6165 MHz and -1233 MHz, respectively, indicating that its triplet state has significant nπ* character, which was supported by its short triplet state lifetime (6.1 µs).

3.
Nanoscale ; 15(47): 19229-19237, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37987611

RESUMEN

The effect of aluminum (Al) concentration on the surface plasmon resonance (SPR) band position of aluminum/polyvinylpyrrolidone (Al/PVP) composite nanofibers was investigated to strengthen nonlinear absorption (NLA) and widen its spectral range. With increasing Al content in PVP nanofibers, the SPR band was shifted towards excitation wavelength and an improved NLA response was achieved. The NLA response was examined both experimentally, by conducting Z-scan experiments, and theoretically, using two models. In the first model, the contributions of one-photon absorption (OPA), two-photon absorption (TPA), excited state absorption (ESA) and saturated absorption (SA) are considered. The second model, on the other hand, is a model that is widely used in the literature, and while taking into account the contributions of OPA and TPA, it neglects the ESA. The first model provides more accurate results due to the high concentration of free carriers in the samples examined. In order to reveal the contribution of Al to the nonlinear absorption, a laser excitation wavelength of 532 nm was chosen to minimize both the defect-assisted sequential and genuine two-photon absorption contributions of PVP. While the nonlinear absorption of pure PVP is quite weak, the NLA performance of Al/PVP nanofibers significantly improved as the Al content increased. As the amount of Al increased, the aggregation effect increased and a broadening and red shift in the SPR band were observed in the plasmonic behavior. This indicates a decreasing interparticle distance in Al particles. The sample with the highest amount of Al is anticipated as a potential candidate for optical limiting (OL) applications due to its superior NLA performance and SPR band furthest towards the near infrared (NIR) region, allowing a wider range of wavelength set to be used in OL applications.

4.
ACS Omega ; 8(34): 30939-30948, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37663455

RESUMEN

BODIPY dyes substituted by phenol or -COOMe units at the meso-position (C8) with and without a distyryl group including a methoxy moiety at the -C3 and -C5 positions of the BODIPY have been synthesized to analyze the photophysical properties. To clarify the ground-state interaction, absorption and emission features were investigated in the THF environment. Extending the π-conjugation with the methoxy moiety at -C3 and -C5 positions of BODIPY leads to a spectral shifting of the absorption maxima toward red by 120 nm. In addition, attaching the -COOMe unit at the meso-position of the BODIPY structure increases nonradiative molecular relaxation as compared to compounds possessing phenol substituents at the same position. We have investigated the effect of phenol and a -COOMe group and π-extended conjugation length with a methoxy moiety on the properties of two-photon absorption (TPA) and electron transfer dynamics by performing open-aperture (OA) Z-scan and femtosecond transient absorption spectroscopy measurements, respectively. The synthesized BODIPY compounds with the distyryl group including the methoxy unit show TPA character due to the longer conjugation length and therefore intramolecular charge transfer ability. Based on the OA Z-scan experiments upon photoexcitation with 800 nm pulsed laser light, TPA cross-section values were obtained as 74 and 81 GM for the compounds possessing phenol and -COOMe units at the meso-position of BODIPY treated by distyryl group with methoxy moieties, respectively. Additionally, optical and electronic properties were calculated theoretically by using the DFT method.

5.
Chemistry ; 29(61): e202302137, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37553294

RESUMEN

Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (ΦΔ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (ΦΔ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.4 ps) and charge separation (CS; 1.55 ns) in BDP-PBI-3, while for BDP-PBI-1, CS takes 2.8 ps. For triad BDP-PBI-2, ultrafast FRET (149 fs) and CS (4.7 ps) process were observed, the subsequent charge recombination (CR) takes 5.8 ns and long-lived 3 PBI* (179.8 µs) state is populated. Nanosecond transient absorption spectra of BDP-PBI-3 show that the CR gives upper triplet excited state (3 BDP*) and subsequently, via a slow intramolecular triplet energy transfer (14.5 µs), the 3 PBI* state is finally populated, indicating that upper triplet state is involved in SOCT-ISC. Time-resolved electron paramagnetic resonance spectroscopy revealed that both radical pair ISC (RP ISC) and SOCT-ISC contribute to the ISC. A rare electron spin polarization of (e, e, e, e, e, e) was observed for the triplet state formed via the RP ISC mechanism, due to the S-T+1 /T0 states mixing.

6.
J Food Prot ; 86(9): 100107, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37230415

RESUMEN

The thermal stability properties of pediocin at 310, 313, 323, 333, 343, and 348 K (37, 40, 50, 60, 70, and 75°C, respectively) are reported in this study. A theoretical approach, such as the molecular dynamics method, was used to analyze the structure. Molecular dynamics simulation confirms the stability of molecules with Cys. Furthermore, this study reveals that Cys residues play an essential role in structure stability at high temperatures. To understand the structural basis for the stability of pediocin, a detailed in-silico analysis using molecular dynamics simulations to explore the thermal stability profiles of the compounds was conducted. This study shows that thermal effects fundamentally alter the functionally crucial secondary structure of pediocin. However, as previously reported, pediocin's activity was strictly conserved due to the disulfide bond between Cys residues. These findings reveal, for the first time, the dominant factor behind the thermodynamic stability of pediocin.


Asunto(s)
Disulfuros , Simulación de Dinámica Molecular , Pediocinas , Estructura Secundaria de Proteína , Disulfuros/química
7.
Chemphyschem ; 24(5): e202200735, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36377545

RESUMEN

Borondipyrromethene (BODIPY) chromophores are composed of a functional-COOH group at meso position with or without a biphenyl ring, and their compounds with heavy iodine atoms at -2, -6 positions of the BODIPY indacene core were synthesized. The photophysical properties of the compounds were studied with steady-state absorption and fluorescence measurements. It was observed that the absorption band is significantly red-shifted, and fluorescence signals are quenched in the presence of iodine atoms. In addition to that, it was indicated that the biphenyl ring does not affect the spectral shifting in the absorption as well as fluorescence spectra. In an attempt to investigate the effect of π-expanded biphenyl moieties and heavy iodine atoms on charge transfer dynamics, femtosecond transient absorption spectroscopy measurements were carried out in the environment of the tetrahydrofuran (THF) solution. Based on the performed ultrafast pump-probe spectroscopy, BODIPY compounds with iodine atoms lead to intersystem crossing (ISC) and ISC rates were determined as 150 ps and 180 ps for iodine BODIPY compounds with and without π-expanded biphenyl moieties, respectively. According to the theoretical results, the charge transfer in the investigated compounds mostly appears to be intrinsic local excitations, corresponding to high photoluminescence efficiency. These experimental findings are useful for the design and study of the fundamental photochemistry of organic triplet photosensitizers.

8.
Phys Chem Chem Phys ; 24(41): 25495-25505, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36254626

RESUMEN

Aza-BODIPY compounds with methoxy groups at -3 and -5 and triphenylamine moieties at -1 and -7 positions with and without heavy bromine atoms at -2 and -6 positions have been designed and synthesized. The chemical structures of the novel compounds were fully characterized using 1H NMR, 13C NMR, FTIR, and HRMS-TOF-ESI techniques. Steady-state absorption and emission features were investigated to analyze ground-state interactions. The effects of triphenylamine moieties and bromine atoms on charge transfer dynamics and two-photon absorption (TPA) properties were investigated using femtosecond transient absorption spectroscopy measurements and open-aperture (OA) Z-scan experiments, respectively. Contrary to popular belief, the compound containing heavy bromine atoms and triphenylamine moieties did not demonstrate any triplet transition. Since the triphenylamine moiety has high electron-donating properties and a long conjugation length, it exhibited intramolecular charge transfer (ICT) features from electron-donating moieties to the aza-BODIPY core. Additionally, it is concluded that the excited-state lifetime is shortened in the presence of a bromine atom with triphenylamine moieties. This result is rather interesting since the triplet excited state is quenched by the triphenylamine moiety despite the presence of a heavy bromine atom. The performed OA Z-scan experiments revealed that the aza-BODIPY compound containing bromine atoms has a higher TPA cross-section value (116 GM) due to efficient intramolecular charge transfer compared to that without bromine atoms (89 GM). Additionally, in the theoretical calculations, it was found that the charge transfer percentage (CT%) was the strongest in compounds containing bromine atoms.


Asunto(s)
Compuestos Aza , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Bromo , Teoría Cuántica , Compuestos de Boro/química , Compuestos Aza/química
9.
J Phys Chem B ; 125(32): 9244-9259, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34355560

RESUMEN

In order to study the effect of mutual orientation of the chromophores in compact electron donor-acceptor dyads on the spin-orbit charge transfer intersystem crossing (SOCT-ISC), we prepared naphthalimide (NI)-pyrene (Py) compact electron donor-acceptor dyads, in which pyrene acts as an electron donor and NI is an electron acceptor. The connection of the two units is at the 4-C and 3-C positions of the NI unit and the 1-position of the pyrene moiety for dyads NI-Py-1 and NI-Py-2, respectively. A charge transfer absorption band was observed for both dyads in the UV-vis absorption spectra. Upon nanosecond pulsed laser excitation, long-lived triplet states (lifetime is 220 µs) were observed and the triplet state was confined to the pyrene moiety. The ISC efficiency is moderate to high in nonpolar to polar solvents (singlet oxygen quantum yield: ΦΔ = 14-52%). Ultrafast charge separation (ca. 0.81 ps) and charge recombination-induced ISC (∼3.0 ns) were observed by femtosecond transient absorption spectroscopy. Time-resolved electron paramagnetic resonance spectroscopy confirms the SOCT-ISC mechanism; interestingly, the observed electron spin polarization pattern of the triplet state is chromophore orientation-dependent; and the population rates of the triplet sublevels of NI-Py-1 (Px:Py:Pz = 0.2:0.8:0) are drastically different from those of NI-Py-2 (Px:Py:Pz = 0:0:1).

10.
J Phys Chem B ; 125(32): 9317-9332, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34378387

RESUMEN

Heavy atom-free triplet photosensitizers (PSs) are particularly of interest concerning both fundamental photochemistry study and practical applications. However, achieving efficient intersystem crossing (ISC) in planar heavy atom-free aromatic organic compounds is challenging. Herein, we demonstrate that two perylenebisimide (PBI) derivatives with anthryl and carbazole moieties fused at the bay position, showing twisted π-conjugation frameworks and red-shifted UV-vis absorption as compared to the native PBI chromophore (by 75-1610 cm-1), possess efficient ISC (singlet oxygen quantum yield: ΦΔ = 85%) and a long-lived triplet excited state (τT = 382 µs in fluid solution and τT = 4.28 ms in solid polymer film). Femtosecond transient absorption revealed ultrafast intramolecular charge-transfer (ICT) process in the twisted PBI derivatives (0.9 ps), and the ISC takes 3.7 ns. Pulsed laser excited time-resolved electron paramagnetic resonance (TREPR) spectra indicate that the triplet-state wave function of the twisted PBIs is mainly confined on the PBI core, demonstrated by the zero-field-splitting D parameter. Accordingly, the twisted derivatives have higher T1 energy (ET1 = 1.48-1.56 eV) as compared to the native PBI chromophore (1.20 eV), which is an advantage for the application of the derivatives as triplet PSs. Theoretical computation of the Franck-Condon density of states, based on excited-state dynamics methods, shows that the efficient ISC in the twisted PBI derivatives is due to the increased spin-orbit coupling matrix elements for the S1-T1 and S1-T2 states [spin-orbit coupling matrix element (SOCME): 0.11-0.44 cm-1. SOCME is zero for native PBI], as well as the Herzberg-Teller vibronic coupling. For the planar benzoPBI, the moderate ISC is due to S1 → T2 transition (SOCME: 0.03 cm-1. The two states share a similar energy, ca. 2.5 eV).

11.
Phys Chem Chem Phys ; 23(14): 8641-8652, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33876025

RESUMEN

The photophysical properties of a heavy atom-free BODIPY derivative with a twisted π-conjugated framework were studied. Efficient intersystem crossing (ISC quantum yield: 56%) and an exceptionally long-lived triplet state were observed (4.5 ms in solid polymer film matrix and 197.5 µs in solution). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy and DFT computations confirmed the delocalization of the triplet state on the whole twisted π-conjugated framework and the zero-field-splitting (ZFS) D parameter of D = -69.5 mT, which is smaller than that of 2,6-diiodoBODIPY (D = -104.6 mT). The electron spin polarization (ESP) phase pattern of the triplet state TREPR spectrum of the twisted BODIPY is (a, a, e, a, e, e), which is different from that of 2,6-diiodo BODIPY (e, e, e, a, a, a), indicating that the electron spin selectivity of the ISC of the twisted structure is different from that of the spin orbital coupling effect. According to the computed spin-orbit coupling matrix elements (0.154-1.964 cm-1), together with the matched energy of the S1/Tn states, ISC was proposed to occur via S1→T2/T3. The computational results were consistent with TREPR results on the electron spin selectivity (the overpopulation of the TY sublevel of the T1 state). The advantage of the long-lived triplet state of the twisted BODIPY was demonstrated by its efficient singlet oxygen (1O2) photosensitizing (ΦΔ = 50.0%) even under a severe hypoxia atmosphere (pO2 = 0.2%, v/v). A high light toxicity (EC50 = 1.0 µM) and low dark toxicity (EC50 = 78.5 µM) were observed for the twisted BODIPY, and thus the cellular studies demonstrate its potential as a novel potent heavy atom-free photodynamic therapy (PDT) agent.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Boro/farmacología , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/química , Compuestos de Boro/química , Espectroscopía de Resonancia por Spin del Electrón , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/metabolismo
12.
J Phys Chem B ; 125(16): 4187-4203, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33876644

RESUMEN

Spiro rhodamine (Rho)-perylene (Pery) electron donor-acceptor dyads were prepared to study the spin-orbit charge transfer intersystem crossing (SOCT-ISC) in these rigid and sterically congested molecular systems. The electron-donor Rho (lactam form) moiety is attached via the N-C bond to the electron acceptor at either 1- or 3-position of the Pery moiety (Rho-Pery-1 and Rho-Pery-3). Severe torsion of the Pery moiety in Rho-Pery-1 was observed. The fluorescence of the two dyads is significantly quenched in polar solvents, and the singlet oxygen quantum yields (ΦΔ) are strongly dependent on solvent polarity (4-36%). Femtosecond transient absorption spectra demonstrate that charge separation (CS) takes 0.51 ps in Rho-Pery-1 and 5.75 ps in Rho-Pery-3, and the charge recombination (CR)-induced ISC is slow (>3 ns). Nanosecond transient absorption spectra indicate that the formation of triplet states via SOCT-ISC takes 24-75 ns for Rho-Pery-1 and 6-15 ns for Rho-Pery-3, and the distorted π-framework of the Pery moiety results in a shorter triplet lifetime of 19.9 vs 291 µs for the planar analogue. Time-resolved electron paramagnetic resonance spectroscopy confirms the SOCT-ISC mechanism.

13.
Chemistry ; 27(27): 7572-7587, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33780070

RESUMEN

Anthracene-naphthalimide (An-NI) compact electron donor-acceptor dyads were prepared, in which the orientation and distance between the two subunits were varied by direct connection or with intervening phenyl linker. Efficient intersystem crossing (ISC) and long triplet state lifetime (ΦΔ =92 %, τT =438 µs) were observed for the directly connected dyads showing a perpendicular geometry (81°). This efficient spin-orbit charge transfer ISC (SOCT-ISC) takes 376 fs, inhibits the direct charge recombination (CR) to ground state (1 CT→S0 , takes 3.04 ns). Interestingly, efficient SOCT-ISC for dyads with intervening phenyl linker (ΦΔ =40 % in DCM) was also observed, although the electron donor and acceptor adopt almost coplanar geometry (dihedral angle: 15°). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy shows that the electron spin polarization of the triplet state, i. e. the electron spin selectivity of ISC, is highly dependent on the dihedral angle and the linker. For the dyads showing weaker coupling between the donor and acceptors, the charge separation and the intramolecular triplet energy transfer are inhibited at 80 K (frozen solution), because both the 3 An and 3 NI states were observed and the ESP are same as compared to the native anthracene and naphthalimide, which unravel their origin. The dyads were used as triplet photosensitizers for triplet-triplet annihilation upconversion (TTA UC). High UC quantum yield (ΦUC =12.9 %) as well as a large anti-Stokes shift (0.72 eV) was attained by excitation into the CT absorption band.

14.
Dalton Trans ; 49(40): 14068-14080, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32959851

RESUMEN

Recent advances in the practical applications of metallophthalocyanines (MPcs) in different technological fields have stimulated us to design and synthesize a new asymmetric AB3-type trimeric zinc(ii)-phthalocyanine (1). This bulky and high molecular weight compound was characterized by elemental analysis, 1H, 13C DEPT, and 1H-1H NOESY NMR, HR MALDI-TOF mass spectrometry, UV-vis, and FT-IR (ATR) techniques. In-depth electrochemical studies show that 1 displays quasi-reversible three one-electron reductions and two one- or two-electron oxidation processes, rather than any redox processes including the transfer of three-electrons in one-step. Besides this, in situ spectroelectrochemical measurements suggest the good application potential of 1 as an electrochromic material in display technologies. A study of the nonlinear optical properties (NLOs) of 1 reveals that the poly(methylmethacrylate) (PMMA) composite film displays a much larger nonlinear absorption coefficient and a lower saturable absorption threshold for optical limiting when compared to the same Pc molecules in solution. Ultrafast transient absorption measurements reveal the intersystem crossing mechanism. Density functional theory (DFT) was used for the geometry optimizations and time dependent-DFT (TD-DFT) for HOMO/LUMO energies and electronic transitions for 1.

15.
Chemphyschem ; 21(13): 1388-1401, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32391942

RESUMEN

Orthogonal phenoxazine-styryl BODIPY compact electron donor/acceptor dyads were prepared as heavy atom-free triplet photosensitizers (PSs) with strong red light absorption (ϵ=1.33×105  M-1 cm-1 at 630 nm), whereas the previously reported triplet photosensitizers based on the spin-orbit charge transfer intersystem crossing (SOCT-ISC) mechanism show absorption in a shorter wavelength range (<500 nm). More importantly, a long-lived triplet state (τT =333 µs) was observed for the new dyads. In comparison, the triplet state lifetime of the same chromophore accessed with the conventional heavy atom effect (HAE) is much shorter (τT =1.8 µs). Long triplet state lifetime is beneficial to enhance electron or energy transfer, the primary photophysical processes in the application of triplet PSs. Our approach is based on SOCT-ISC, without invoking of the HAE, which may shorten the triplet state lifetime. We used bisstyrylBodipy both as the electron acceptor and the visible light-harvesting chromophore, which shows red-light absorption. Femtosecond transient absorption spectra indicated the charge separation (109 ps) and SOCT-ISC (charge recombination, CR; 2.3 ns) for BDP-1. ISC efficiency of BDP-1 was determined as ΦT =25 % (in toluene). The dyad BDP-3 was used as triplet PS for triplet-triplet annihilation upconversion (upconversion quantum yield ΦUC =1.5 %; anti-Stokes shift is 5900 cm-1 ).

16.
J Chem Phys ; 152(11): 114701, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32199436

RESUMEN

In order to study the spin-orbit charge transfer induced intersystem crossing (SOCT-ISC), Bodipy (BDP)-carbazole (Cz) compact electron donor/acceptor dyads were prepared. Charge transfer (CT) emission bands were observed for dyads showing strong electronic coupling between the donor and the acceptor (coupling matrix elements VDA, 0.06 eV-0.18 eV). Depending on the coupling magnitude, the CT state of the dyads can be either dark or emissive. Equilibrium between the 1LE (locally excited) state and the 1CT state was confirmed by temperature-dependent fluorescence studies. Efficient ISC was observed for the dyads with Cz connected at the meso-position of the BDP. Interestingly, the dyad with non-orthogonal geometry shows the highest ISC efficiency (ΦΔ = 58%), which is different from the previous conclusion. The photo-induced charge separation (CS, time constant: 0.7 ps) and charge recombination (CR, ∼3.9 ns) were studied by femtosecond transient absorption spectroscopy. Nanosecond transient absorption spectroscopy indicated that the BDP-localized triplet state was exceptionally long-lived (602 µs). Using pulsed laser excited time-resolved electron paramagnetic resonance spectroscopy, the SOCT-ISC mechanism was confirmed, and we show that the electron spin polarization of the triplet state is highly dependent on the mutual orientation of the donor and acceptor. The dyads were used as triplet photosensitizers for triplet-triplet-annihilation (TTA) upconversion, and the quantum yield is up to 6.7%. TTA-based delayed fluorescence was observed for the dyads (τDF = 41.5 µs). The dyads were also used as potent photodynamic therapy reagents (light toxicity of IC50 = 0.1 µM and dark toxicity of IC50 = 70.8 µM).

17.
Phys Chem Chem Phys ; 22(11): 6376-6390, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32141446

RESUMEN

Perylenemonoimide (PMI)-carbazole (Cz) compact electron donor/acceptor dyads were prepared to study the relationship between the mutual orientation of the electron donor/acceptor in the dyads and the spin-orbit charge transfer intersystem crossing (SOCT-ISC) efficiency. The PMI and the Cz units are connected via either a C-C or C-N bond, or with an intervening phenyl moiety. The photophysical properties of the dyads were studied with steady state and time-resolved optical spectroscopies. The fluorescence of the PMI unit in the dyads was generally quenched, due to photo-induced electron transfer, especially in polar solvents (the fluorescence has a biexponential decay in acetonitrile, τF = 1.4 ns/population ratio: 98.9%, and 9.6 ns/population ratio: 1.1%). The triplet state (lifetime τT = 14.7 µs) formation of the dyads is dependent on the solvent polarity, which is characteristic for SOCT-ISC. Femtosecond transient absorption spectra show that the charge separation takes 0.28 ps and the charge recombination takes 1.21 ns. Reversible photo-reduction of the PMI-Cz dyads and generation of the near IR-absorbing (centered at 604 nm and 774 nm) PMI radical anion (PMI-˙) were observed in the presence of a sacrificial electron donor (triethylamine). These results are useful for study of the fundamental photochemistry of compact electron donor/acceptor dyads and for design of new heavy atom-free triplet photosensitizers.

18.
J Mol Model ; 25(11): 317, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31598788

RESUMEN

PACS and mathematical subject classification numbers as needed. Molecular dynamic simulation is a very usable tool to understand various factors, including structure temperature dependence, dynamics, and stability for protein structure. The three main components, namely endoglucanase, exoglucanase, and ß-glucosidase, effectively convert lignocellulosic biomass into fermentable sugar. Cellulose is the major component of plant cell walls and is the most abundant organic compound on the earth. Somewhat organisms can use cellulose as a food source, possessing cellulases (cellobiohydrolases and endoglucanases) that can catalyze the hydrolysis of the ß-(1,4) glycosidic bonds. In this work, we investigated conformational and structural properties of PcCel45A protein by changing at temperatures with 300 K, 333 K, and 352 K. We found that the ASN92 residue was the major contributor to the stability of structure; some other residues correlated significantly with thermal stability. We also compared the theoretical results of the current study with the experimental ones published in previous studies.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Biomasa , Catálisis , Celulasa/metabolismo , Celulosa/metabolismo , Hidrólisis , Simulación de Dinámica Molecular , Temperatura , beta-Glucosidasa/metabolismo
19.
Inorg Chem ; 58(3): 1850-1861, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30672269

RESUMEN

Using naphthalimide (NI), complexes (Pt-PhNI and Pt-PhMeNI) based on the N^N platinum(II) bis(phenylacetylide) coordination framework were prepared, in which there are two close-lying triplet states, i.e., the metal-to-ligand-charge-transfer (3MLCT) and the NI localized emissive state (3LE). Pt-PhNI has better electronic communication between the Pt coordination center and the NI moiety, whereas in Pt-PhMeNI, they are more isolated by orthogonal geometry. For Pt-PhMeNI, the S0 → 1MLCT and S0 → 1LE absorption bands are separated by 5655 cm-1, while they are more overlapped in Pt-PhNI. The 3MLCT → S0 and 3LE → S0 dual phosphorescence emissions were observed for both Pt-PhNI (in toluene) and Pt-PhMeNI (in benzonitrile). The molecular conformation tunes the 3MLCT/3LE state population ratio, and the orthogonal geometry makes the 3LE state in Pt-PhMeNI basically a dark state (in toluene). Switching of the relative energy levels of the 3MLCT/3LE states by variation of the solvent polarity and temperature was achieved. For Pt-PhMeNI, the energy level of 3MLCT state is higher in a polar solvent; thus, the 3MLCT emission decreases, while the phosphorescence lifetime is prolonged from 9.5 µs (in toluene) to 58 µs (in benzonitrile) because of the different equilibria with the nonemissive 3LE state. Conversely, increasing the temperature enhances the upward transition from the nonemissive 3LE state to the emissive 3MLCT state; as such, the phosphorescence of Pt-PhMeNI was intensified at higher temperature (which is unusual), and the phosphorescence lifetime decreased from 58 µs (298 K) to ca. 5 µs (348 K). The ultrafast intersystem crossing (ca. 0.5 ps) and intramolecular triplet-triplet energy transfer (3-11 ps) were studied by femtosecond transient absorption spectroscopy. These results are useful for an in-depth understanding of the photophysics of multichromophore transition-metal complexes and for the design of external stimuli-responsive sensing materials, for instance, temperature or microenvironment sensing materials.

20.
Dalton Trans ; 47(22): 7422-7430, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29774329

RESUMEN

Perylene diimides (PDIs) are among the most versatile and functional dyes for supramolecular structures displaying characteristic high absorptions and photo-luminescence properties as the prerequisite for optoelectronic thin film devices. Despite intense investigations into these semi-conducting and electro-active materials, details of their electronic structure are still under examination. In particular, non-planar twisted PDIs as an electron acceptor is a promising model system for efficient charge generation and transport processes. Therefore, a new dyad, an unsymmetrical PDI, N'-(2-ethylhexyl)-N'-(1,10-phenanthroline)-1,6,7,12-tetrakis-(4-methoxyphenoxy)-3,4,9,10-tetracarboxylic acid diimide (1) and its corresponding dichloroplatinum(ii) and dichloropalladium(ii) complexes as new dyads, [(Cl2)M(ii)-(1)] where, M(ii) = Pt(ii) (2) and Pd(ii) (3), were prepared. These dyads were fully characterized by FT-IR, 1D-NMR (1H-NMR and 13C-NMR), 2D-NMR (1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC), MALDI TOF mass and UV-Vis spectroscopy. Electronic structure calculations have been employed based on Time-Dependent Density Functional Theory (TDDFT) calculations for the geometry-optimized electronic ground state structures in the gas phase and in dichloromethane (DCM). Current results indicate that 2 and 3 have similar HOMO-LUMO energy gaps which are smaller than 1. The energy and charge transfer processes with molecular structures are crucial for the design of future functional dyads based on donor and acceptor moieties for hybrid optoelectronic devices. Charge transfer mechanisms were also investigated with linear absorption, fluorescence and ultrafast transient absorption spectra for the newly synthesized compounds in DCM. The observed ultrafast intramolecular charge transfer from donor units on the PDI-2 compound is related to fluorescence quenching and faster singlet decay on transient measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...