Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(21): 8071-8082, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37199538

RESUMEN

This study aimed to understand how specific cell-bound receptors influence ACE2 activation by IRW. Our results showed that G protein-coupled receptor 30 (GPR30), a 7-transmembrane domain protein, was involved in IRW-mediated ACE2 increase. IRW treatment (50 µM) significantly increased the GPR30 pool levels (3.2 ± 0.5 folds) (p < 0.001). IRW treatment also boosted the consecutive GEF (guanine nucleotide exchange factor) activity (2.2 ± 0.2 folds) (p < 0.001), and GNB1 levels (2.0 ± 0.5 folds) (p < 0.05), associated with the functional subunits of G proteins, in cells. These results were translated in hypertensive animal studies as well (p < 0.05), indicated by an increase in the aortal levels of GPR30 (p < 0.01); further experiments showed an increase in downstream PIP3/PI3K/Akt pathway activation following IRW treatment. The blockade of GPR30 by an antagonist and siRNA in cells abolished the ACE2-activating ability of IRW, as shown by the depleted levels of ACE2 mRNA (p < 0.001), protein levels in whole cells and membrane, angiotensin (1-7) (p < 0.01), and ACE2 promoter HNF1α (p < 0.05). Finally, the GPR30 blockade in ACE2-overexpressing cells using the antagonist (p < 0.01) and siRNA (p < 0.05) significantly depleted the innate cellular pool of ACE2, thus confirming the relationship between the membrane-bound GPR30 and ACE2. Overall, these results showed that the vasodilatory peptide IRW could activate ACE2 via the membrane-bound receptor GPR30.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Fosfatidilinositol 3-Quinasas , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
Int J Biol Sci ; 19(6): 1731-1747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063429

RESUMEN

Triple-negative breast cancer (TNBC) is difficult to treat; therefore, the development of drugs directed against its oncogenic vulnerabilities is a desirable goal. Herein, we report the antitumor effects of CM728, a novel quinone-fused oxazepine, against this malignancy. CM728 potently inhibited TNBC cell viability and decreased the growth of MDA-MB-231-induced orthotopic tumors. Furthermore, CM728 exerted a strong synergistic antiproliferative effect with docetaxel in vitro and this combination was more effective than the individual treatments in vivo. Chemical proteomic approaches revealed that CM728 bound to peroxiredoxin-1 (Prdx1), thereby inducing its oxidation. Molecular docking corroborated these findings. CM728 induced oxidative stress and a multi-signal response, including JNK/p38 MAPK activation and STAT3 inhibition. Interestingly, Prdx1 downregulation mimicked these effects. Finally, CM728 led to DNA damage, cell cycle blockage at the S and G2/M phases, and the activation of caspase-dependent apoptosis. Taken together, our results identify a novel compound with antitumoral properties against TNBC. In addition, we describe the mechanism of action of this drug and provide a rationale for the use of Prdx1 inhibitors, such as CM728, alone or in combination with other drugs, for the treatment of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Docetaxel/farmacología , Simulación del Acoplamiento Molecular , Proteómica , Neoplasias de la Mama Triple Negativas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Bioorg Chem ; 134: 106456, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36913879

RESUMEN

The 2-(3-pyridyl)oxazolo[5,4-f]quinoxalines CD-07 and FL-291 are ATP-competitive GSK-3 kinase inhibitors. Here, we investigated the impact of FL-291 on neuroblastoma cell viability and showed that treatment at 10 µM (i.e. ∼500 times the IC50 against the GSK-3 isoforms) has no significant effect on the viability of NSC-34 motoneuron-like cells. A study performed on primary neurons (non-cancer cells) led to similar results. The structures co-crystallized with GSK-3ß revealed similar binding modes for FL-291 and CD-07, with their hinge-oriented planar tricyclic system. Both GSK isoforms show the same orientations for the amino acids at the binding pocket except for Phe130 (α) and Phe67 (ß), leading to a larger pocket on the opposite side of the hinge region for the α isoform. Calculations of the thermodynamic properties of the binding pockets highlighted the required features of potential ligands; these should have a hydrophobic core (which could be larger in the case of GSK-3ß) surrounded by polar areas (a little more polar in the case of GSK-3α). A library of 27 analogs of FL-291 and CD-07 was thus designed and synthesized by taking advantage of this hypothesis. While the introduction of substituents at different positions of the pyridine ring, the replacement of the pyridine by other heterocyclic moieties, or the replacement of the quinoxaline ring by a quinoline moiety did not lead to any improvement, the replacement of the N-(thio)morpholino of FL-291/CD-07 by a slightly more polar N-thiazolidino led to a significant result. Indeed, the new inhibitor MH-124 showed clear selectivity for the α isoform, with IC50 values of 17 nM and 239 nM on GSK-3α and GSK-3ß, respectively. Finally, the efficacy of MH-124 was evaluated on two glioblastoma cell lines. Although MH-124 alone did not have a significant impact on cell survival, its addition to temozolomide (TMZ) significantly reduced the TMZ IC50 values on the cells tested. The use of the Bliss model allowed a synergy to be evidenced at certain concentrations.


Asunto(s)
Glioblastoma , Glucógeno Sintasa Quinasa 3 , Humanos , Temozolomida , Glucógeno Sintasa Quinasa 3 beta , Quinoxalinas/farmacología , Proteínas Serina-Treonina Quinasas , Isoformas de Proteínas
4.
J Mol Model ; 29(1): 25, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36580076

RESUMEN

CONTEXT: Egypt has a high prevalence of the hepatitis C virus (HCV) genotype 4a (GT-4a). Unfortunately, the high resistance it exhibited still was not given the deserved attention in the scientific community. There is currently no consensus on the NS5A binding site because the crystal structure of HCV NS5A has not been resolved. The prediction of the binding modes of direct-acting antivirals (DAA) with the NS5A is a point of controversy due to the fact that several research groups presented different interaction models to elucidate the NS5A binding site. Consequently, a 3D model of HCV NS5A GT-4a was constructed and evaluated using molecular dynamics (MD) simulations. The generated model implies an intriguing new orientation of the AH relative to domain I. Additionally, the probable binding modes of marketed NS5A inhibitors were explored. MD simulations validated the stability of the predicted protein-ligand complexes. The suggested model predicts that daclatasvir and similar drugs bind symmetrically to HCV NS5A GT-4a. This will allow for the development of new NS5A-directed drugs, which may result in reduced resistance and/or a wider range of effectiveness against HCV. METHODS: The 3D model of HCV NS5A GT-4a was constructed using the comparative modeling approach of the web-based application Robetta. Its stability was tested with 200-ns MD simulations using the Desmond package of Schrodinger. The OPLS2005 force field was assigned for minimization, and the RMSD, RMSF, and rGyr were tracked throughout the MD simulations. Fpocket was used to identify druggable protein pockets (cavities) over the simulation trajectories. The binding modes of marketed NS5A inhibitors were then generated and refined with the aid of docking predictions made by FRED and AutoDock Vina. The stability of these drugs in complex with GT-4a was investigated by using energetic and structural analyses over MD simulations. The Prime MM-GBSA (molecular mechanics/generalized Born surface area) method was used as a validation tool after the docking stage and for the averaged clusters after the MD simulation stage. We utilized PyMOL and VMD to visualize the data.


Asunto(s)
Antivirales , Hepatitis C Crónica , Humanos , Antivirales/química , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatitis C Crónica/tratamiento farmacológico , Imidazoles/farmacología , Imidazoles/química , Genotipo , Proteínas no Estructurales Virales/química , Farmacorresistencia Viral/genética
5.
Pharmaceutics ; 14(10)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36297481

RESUMEN

Coronavirus disease 2019 (COVID-19), the current global pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Various pharmaceuticals are being developed to counter the spread of the virus. The strategy of repurposing known drugs and bioactive molecules is a rational approach. A previously described molecule, Ile-Arg-Trp (IRW), is a bioactive tripeptide that exhibits an ability to boost angiotensin converting enzyme-2 (ACE2) expression in animals and cells. Given the importance of SARS-CoV-2 S receptor binding domain (RBD)-ACE2 interaction in SARS-CoV-2 pathophysiology, we synthesized various IRW analogs intending to mitigate the RBD-ACE-2 interaction. Herein, we describe two analogs of IRW, A9 (Acetyl-Ile-Arg-Trp-Amide) and A14 (Formyl-Ile-Arg-Trp-Amide) which lowered the SARS-CoV-2 S RBD-ACE2 (at 50 µM) in vitro. The free energy of binding suggested that A9 and A14 interacted with the SARS-CoV-2 S RBD more favorably than ACE2. The calculated MMGBSA ΔG of spike binding for A9 was -57.22 kcal/mol, while that of A14 was -52.44 kcal/mol. A14 also inhibited furin enzymatic activity at various tested concentrations (25, 50, and 100 µM). We confirmed the effect of the two potent analogs using SARS-CoV-2 spike protein overexpressing cells. Both peptides lowered the protein expression of SARS-CoV-2 spike protein at the tested concentration (50 µM). Similarly, both peptides, A9 and A14 (50 µM), also inhibited pseudotyped lentiviral particles with SARS-CoV-2 Spike in ACE2 overexpressing cells. Further, the molecular dynamics (MD) calculations showed the interaction of A9 and A14 with multiple residues in spike S1 RBD. In conclusion, novel peptide analogs of ACE2 boosting IRW were prepared and confirmed through in vitro, cellular, and computational evaluations to be potential seed candidates for SARS-CoV-2 host cell binding inhibition.

6.
Molecules ; 27(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956876

RESUMEN

Herein, 2,3-dioxo-1,2,3,4-tetrahydroquinoxaline was used as a bio-isosteric scaffold to the phthalazinone motif of the standard drug Olaparib to design and synthesize new derivatives of potential PARP-1 inhibitory activity using the 6-sulfonohydrazide analog 3 as the key intermediate. Although the new compounds represented the PARP-1 suppression impact of IC50 values in the nanomolar range, compounds 8a, 5 were the most promising suppressors, producing IC50 values of 2.31 and 3.05 nM compared to Olaparib with IC50 of 4.40 nM. Compounds 4, 10b, and 11b showed a mild decrease in the potency of the IC50 range of 6.35-8.73 nM. Furthermore, compounds 4, 5, 8a, 10b, and 11b were evaluated as in vitro antiproliferative agents against the mutant BRCA1 (MDA-MB-436, breast cancer) compared to Olaparib as a positive control. Compound 5 exhibited the most significant potency of IC50; 2.57 µM, whereas the IC50 value of Olaparib was 8.90 µM. In addition, the examined derivatives displayed a promising safety profile against the normal WI-38 cell line. Cell cycle, apoptosis, and autophagy analyses were carried out in the MDA-MB-436 cell line for compound 5, which exhibited cell growth arrest at the G2/M phase, in addition to induction of programmed apoptosis and an increase in the autophagic process. Molecular docking of the compounds 4, 5, 8a, 10b, and 11b into the active site of PARP-1 was carried out to determine their modes of interaction. In addition, an in silico ADMET study was performed. The results evidenced that compound 5 could serve as a new framework for discovering new potent anticancer agents targeting the PARP-1 enzyme.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Quinoxalinas/química , Relación Estructura-Actividad
7.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457108

RESUMEN

Vitamin E acetate, which is used as a diluent of tetrahydrocannabinol (THC), has been reported as the primary causative agent of e-cigarette, or vaping, product use-associated lung injury (EVALI). Here, we employ in vitro assays, docking, and molecular dynamics (MD) computer simulations to investigate the interaction of vitamin E with the membrane-bound cannabinoid 2 receptor (CB2R), and its role in modulating the binding affinity of THC to CB2R. From the MD simulations, we determined that vitamin E interacts with both CB2R and membrane phospholipids. Notably, the synchronized effect of these interactions likely facilitates vitamin E acting as a lipid modulator for the cannabinoid system. Furthermore, MD simulation and trajectory analysis show that when THC binds to CB2R in the presence of vitamin E, the binding cavity widens, facilitating the entry of water molecules into it, leading to a reduced interaction of THC with CB2R. Additionally, the interaction between THC and vitamin E in solution is stabilized by several H bonds, which can directly limit the interaction of free THCs with CB2R. Overall, both the MD simulations and the in vitro dissociation assay results indicate that THC binding to CB2R is reduced in the presence of vitamin E. Our study discusses the role of vitamin E in limiting the effect of THCs and its implications on the reported pathology of EVALI.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Dronabinol/farmacología , Enfermedades Genéticas Ligadas al Cromosoma X , Receptores de Cannabinoides , Trombocitopenia , Vitamina E/farmacología
8.
Biomedicines ; 9(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34680421

RESUMEN

A series of dietary flavonoid acacetin 7-O-methyl ether derivatives were computationally designed aiming to improve the selectivity and potency profiles against monoamine oxidase (MAO) B. The designed compounds were evaluated for their potential to inhibit human MAO-A and -B. Compounds 1c, 2c, 3c, and 4c were the most potent with a Ki of 37 to 68 nM against MAO-B. Compounds 1c-4c displayed more than a thousand-fold selectivity index towards MAO-B compared with MAO-A. Moreover, compounds 1c and 2c showed reversible inhibition of MAO-B. These results provide a basis for further studies on the potential application of these modified flavonoids for the treatment of Parkinson's Disease and other neurological disorders.

9.
J Chem Inf Model ; 61(9): 4745-4757, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34403259

RESUMEN

The main protease of SARS-CoV-2 virus, Mpro, is an essential element for viral replication, and inhibitors targeting Mpro are currently being investigated in many drug development programs as a possible treatment for COVID-19. An in vitro pilot screen of a highly focused collection of compounds was initiated to identify new lead scaffolds for Mpro. These efforts identified a number of hits. The most effective of these was compound SIMR-2418 having an inhibitory IC50 value of 20.7 µM. Molecular modeling studies were performed to understand the binding characteristics of the identified compounds. The presence of a cyclohexenone warhead group facilitated covalent binding with the Cys145 residue of Mpro. Our results highlight the challenges of targeting Mpro protease and pave the way toward the discovery of potent lead molecules.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Humanos , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología
10.
Molecules ; 26(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34299438

RESUMEN

An efficient synthesis of rac-6-desmethyl-5ß-hydroxy-d-secoartemisinin 2, a tricyclic analog of R-(+)-artemisinin 1, was accomplished and the racemate was resolved into the (+)-2b and (-)-2a enantiomers via their Mosher Ester diastereomers. Antimalarial activity resided with only the artemisinin-like enantiomer R-(-)-2a. Several new compounds 9-16, 19a, 19b, 22 and 29 were synthesized from rac-2 but the C-5 secondary hydroxyl group was surprisingly unreactive. For example, the formation of carbamates and Mitsunobu reactions were unsuccessful. In order to assess the unusual reactivity of 2, a single crystal X-ray crystallographic analysis revealed a close intramolecular hydrogen bond from the C-5 alcohol to the oxepane ether oxygen (O-11). All products were tested in vitro against the W-2 and D-6 strains of Plasmodium falciparum. Several of the analogs had moderate activity in comparison to the natural product 1. Iron (II) bromide-promoted rearrangement of 2 gave, in 50% yield, the ring-contracted tetrahydrofuran 22, while the 5-ketone 15 provided a monocyclic methyl ketone 29 (50%). Neither 22 nor 29 possessed in vitro antimalarial activity. These results have implications in regard to the antimalarial mechanism of action of artemisinin.


Asunto(s)
Antimaláricos/química , Artemisininas/química , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/farmacología , Artemisininas/síntesis química , Artemisininas/farmacología , Cristalografía por Rayos X/métodos , Compuestos Heterocíclicos , Enlace de Hidrógeno , Cetonas , Sesquiterpenos/química , Estereoisomerismo , Relación Estructura-Actividad
11.
Bioorg Med Chem ; 42: 116251, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34116381

RESUMEN

Selective inhibition of histone deacetylases (HDACs) is an important strategy in the field of anticancer drug discovery. However, lack of inhibitors that possess high selectivity toward certain HDACs isozymes is associated with adverse side effects that limits their clinical applications. We have initiated a collaborative initiatives between multi-institutions aimed at the discovery of novel and selective HDACs inhibitors. To this end, a phenotypic screening of an in-house pilot library of about 70 small molecules against various HDAC isozymes led to the discovery of five compounds that displayed varying degrees of HDAC isozyme selectivity. The anticancer activities of these molecules were validated using various biological assays including transcriptomic studies. Compounds 15, 14, and 19 possessed selective inhibitory activity against HDAC5, while 28 displayed selective inhibition of HDAC1 and HDAC2. Compound 22 was found to be a selective inhibitor for HDAC3 and HDAC9. Importantly, we discovered a none-hydroxamate based HDAC inhibitor, compound 28, representing a distinct chemical probe of HDAC inhibitors. It contains a trifluoromethyloxadiazolyl moiety (TFMO) as a non-chelating metal-binding group. The new compounds showed potent anti-proliferative activity when tested against MCF7 breast cancer cell line, as well as increased acetylation of histones and induce cells apoptosis. The new compounds apoptotic effects were validated through the upregulation of proapoptotic proteins caspases3 and 7 and downregulation of the antiapoptotic biomarkers C-MYC, BCL2, BCL3 and NFĸB genes. Furthermore, the new compounds arrested cell cycle at different phases, which was confirmed through downregulation of the CDK1, 2, 4, 6, E2F1 and RB1 proteins. Taken together, our findings provide the foundation for the development of new chemical probes as potential lead drug candidates for the treatment of cancer.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad
12.
Molecules ; 26(4)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672916

RESUMEN

The in vitro activity of L. donovani (promastigotes, axenic amastigotes and intracellular amastigotes in THP1 cells) and T. brucei, from the fractions obtained from the hydroalcoholic extract of the aerial part of Hypericum afrum and the isolated compounds, has been evaluated. The chloroform, ethyl acetate and n-butanol extracts showed significant antitrypanosomal activity towards T. brucei, with IC50 values of 12.35, 13.53 and 12.93 µg/mL and with IC90 values of 14.94, 19.31 and 18.67 µg/mL, respectively. The phytochemical investigation of the fractions led to the isolation and identification of quercetin (1), myricitrin (2), biapigenin (3), myricetin (4), hyperoside (5), myricetin-3-O-ß-d-galactopyranoside (6) and myricetin-3'-O-ß-d-glucopyranoside (7). Myricetin-3'-O-ß-d-glucopyranoside (7) has been isolated for the first time from this genus. The chemical structures were elucidated by using comprehensive one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) spectroscopic data, as well as high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). These compounds have also been evaluated for their antiprotozoal activity. Quercetin (1) and myricetin (4) showed noteworthy activity against T. brucei, with IC50 and IC90 values of 7.52 and 5.71 µM, and 9.76 and 7.97 µM, respectively. The T. brucei hexokinase (TbHK1) enzyme was further explored as a potential target of quercetin and myricetin, using molecular modeling studies. This proposed mechanism assists in the exploration of new candidates for novel antitrypanosomal drugs.


Asunto(s)
Antiprotozoarios/farmacología , Flavonoides/farmacología , Hypericum/química , Modelos Moleculares , Fitoquímicos/farmacología , Quercetina/farmacología , Trypanosoma/efectos de los fármacos , Secuencia de Aminoácidos , Antiprotozoarios/química , Sitios de Unión , Muerte Celular/efectos de los fármacos , Secuencia Conservada , Flavonoides/química , Flavonoides/aislamiento & purificación , Ligandos , Simulación de Dinámica Molecular , Fitoquímicos/química , Estructura Secundaria de Proteína , Proteínas Protozoarias/química , Quercetina/química , Quercetina/aislamiento & purificación , Agua/química
13.
J Chem Inf Model ; 61(2): 1020-1032, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33538596

RESUMEN

Currently the entire human population is in the midst of a global pandemic caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome CoronaVirus 2). This highly pathogenic virus has to date caused >71 million infections and >1.6 million deaths in >180 countries. Several vaccines and drugs are being studied as possible treatments or prophylactics of this viral infection. M3CLpro (coronavirus main cysteine protease) is a promising drug target as it has a significant role in viral replication. Here we use the X-ray crystal structure of M3CLpro in complex with boceprevir to study the dynamic changes of the protease upon ligand binding. The binding free energy was calculated for water molecules at different locations of the binding site, and molecular dynamics (MD) simulations were carried out for the M3CLpro/boceprevir complex, to thoroughly understand the chemical environment of the binding site. Several HCV NS3/4a protease inhibitors were tested in vitro against M3CLpro. Specifically, asunaprevir, narlaprevir, paritaprevir, simeprevir, and telaprevir all showed inhibitory effects on M3CLpro. Molecular docking and MD simulations were then performed to investigate the effects of these ligands on M3CLpro and to provide insights into the chemical environment of the ligand binding site. Our findings and observations are offered to help guide the design of possible potent protease inhibitors and aid in coping with the COVID-19 pandemic.


Asunto(s)
Antivirales/farmacología , Proteasas de Cisteína/química , SARS-CoV-2/efectos de los fármacos , Inhibidores de Serina Proteinasa/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Simulación por Computador , Cristalografía por Rayos X , Proteasas de Cisteína/efectos de los fármacos , Humanos , Técnicas In Vitro , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , SARS-CoV-2/enzimología , Serina Proteasas
14.
ACS Med Chem Lett ; 11(11): 2156-2164, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33214824

RESUMEN

The dual PI3Kα/ m TOR inhibitors represent a promising molecularly targeted therapy for cancer. Here, we documented the discovery of new 2,4-disubstituted quinazoline analogs as potent dual PI3Kα/sm TOR inhibitors. Our structure based chemistry endeavor yielded six excellent compounds 9e, 9f, 9g, 9k, 9m, and 9o with single/double digit nanomolar IC50 values against both enzymes and acceptable aqueous solubility and stability to oxidative metabolism. One of those analogs, 9m, possessed a sulfonamide substituent, which has not been described for this chemical scaffold before. The short direct synthetic routes, structure-activity relationship, in vitro 2D cell culture viability assays against normal fibroblasts and 3 breast cancer cell lines, and in vitro 3D culture viability assay against MCF7 cells for this series are described.

15.
ACS Med Chem Lett ; 11(10): 1820-1828, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33062159

RESUMEN

Prior to genetic mapping, the majority of drug discovery efforts involved phenotypic screening, wherein compounds were screened in either in vitro or in vivo models thought to mimic the disease state of interest. While never completely abandoning phenotypic approaches, the labor intensive nature of such tests encouraged the pharmaceutical industry to move away from them in favor of target-based drug discovery, which facilitated throughput and allowed for the efficient screening of large numbers of compounds. However, a consequence of reliance on target-based screening was an increased number of failures in clinical trials due to poor correlation between novel mechanistic targets and the actual disease state. As a result, the field has seen a recent resurrection in phenotypic drug discovery approaches. In this work, we highlight some recent phenotypic projects from our industrial past and in our current academic drug discovery environment that have provided encouraging results.

16.
Artículo en Inglés | MEDLINE | ID: mdl-32181246

RESUMEN

More attention has been recently directed toward glutathione peroxidase and s-transferase enzymes because of the great importance they hold with respect to their applications in the pharmaceutical field. This work was conducted to optimize the production and characterize glutathione peroxidase and glutathione s-transferase produced by Lactobacillus plantarum KU720558 using Plackett-Burman and Box-Behnken statistical designs. To assess the impact of the culture conditions on the microbial production of the enzymes, colorimetric methods were used. Following data analysis, the optimum conditions that enhanced the s-transferase yield were the De Man-Rogosa-Sharp (MRS) broth as a basal medium supplemented with 0.1% urea, 0.075% H2O2, 0.5% 1-butanol, 0.0125% amino acids, and 0.05% SDS at pH 6.0 and anaerobically incubated for 24 h at 40°C. The optimum s-transferase specific activity was 1789.5 U/mg of protein, which was ~12 times the activity of the basal medium. For peroxidase, the best medium composition was 0.17% urea, 0.025% bile salt, 7.5% Na Cl, 0.05% H2O2, 0.05% SDS, and 2% ethanol added to the MRS broth at pH 6.0 and anaerobically incubated for 24 h at 40°C. Furthermore, the optimum peroxidase specific activity was 612.5 U/mg of protein, indicating that its activity was 22 times higher than the activity recorded in the basal medium. After SDS-PAGE analysis, GST and GPx showed a single protein band of 25 and 18 kDa, respectively. They were able to retain their activities at an optimal temperature of 40°C for an hour and pH range 4-7. The 3D model of both enzymes was constructed showing helical structures, sheet and loops. Protein cavities were also detected to define druggable sites. GST model had two large pockets; 185Å3 and 71 Å3 with druggability score 0.5-0.8. For GPx, the pockets were relatively smaller, 71 Å3 and 32 Å3 with druggability score (0.65-0.66). Therefore, the present study showed that the consortium components as well as the stress-based conditions used could express both enzymes with enhanced productivity, recommending their application based on the obtained results.

17.
J Nat Prod ; 81(5): 1154-1161, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29676912

RESUMEN

The in vitro antidiabetic and antihyperlipidemic activities of an alcoholic extract of Trigonella stellata were evaluated in terms of the activation of PPARα and PPARγ in human hepatoma (HepG2) cells. The extract was investigated phytochemically, aiming at the isolation of the most active compounds to be used as a platform for drug discovery. Three new isoflavans, (3 S,4 R)-4,2',4'-trihydroxy)-7-methoxyisoflavan (1), (3 R,4 S)-4,2',4'-trihydroxy-7-methoxy-4'- O-ß-d-glucopyranosylisoflavan (2), and (2 S,3 R,4 R)-4,2',4'-trihydroxy-2,7-dimethoxyisoflavan (3), were isolated and characterized along with the five known compounds p-hydroxybenzoic acid (4), 7,4'-dihydroxyflavone (5), dihydromelilotoside (6), quercetin-3,7- O-α-l-dirhamnoside (7), and soyasaponin I (8). The structures of 1-3 were elucidated using various spectroscopic techniques including HRESIMS and 1D and 2D NMR. The absolute stereochemistry of the new isoflavans (1-3) was determined using both experimental and calculated electronic circular dichroism as well as DP4 calculations. The isolated compounds were tested for their PPARα and PPARγ activation effects in HepG2 cells.


Asunto(s)
Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipolipemiantes/química , Hipolipemiantes/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Trigonella/química , Línea Celular Tumoral , Células Hep G2 , Humanos , Espectroscopía de Resonancia Magnética/métodos , Quercetina/química , Quercetina/farmacología
18.
Molecules ; 23(4)2018 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-29690500

RESUMEN

Biotransformation of fusidic acid (1) was accomplished using a battery of microorganisms including Cunninghamella echinulata NRRL 1382, which converted fusidic acid (1) into three new metabolites 2⁻4 and the known metabolite 5. These metabolites were identified using 1D and 2D NMR and HRESI-FTMS data. Structural assignment of the compounds was supported via computation of ¹H- and 13C-NMR chemical shifts. Compounds 2 and 3 were assigned as the 27-hydroxy and 26-hydroxy derivatives of fusidic acid, respectively. Subsequent oxidation of 3 afforded aldehyde 4 and the dicarboxylic acid 5. Compounds 2, 4 and 5 were screened for antimicrobial activity against different Gram positive and negative bacteria, Mycobacterium smegmatis, M. intercellulare and Candida albicans. The compounds showed lower activity compared to fusidic acid against the tested strains. Molecular docking studies were carried out to assist the structural assignments and predict the binding modes of the metabolites.


Asunto(s)
Cunninghamella/metabolismo , Ácido Fusídico/química , Oxidación-Reducción , Biotransformación , Fermentación , Ácido Fusídico/farmacología , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular
19.
Phytomedicine ; 40: 27-36, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29496172

RESUMEN

BACKGROUND: Monoamine oxidases (MAOs) are outer mitochondrial membrane flavoenzymes. They catalyze the oxidative deamination of a variety of neurotransmitters. MAO-A and MAO-B may be considered as targets for inhibitors to treat neurodegenerative diseases and depression and for managing symptoms associated with Parkinson's and Alzheimer's diseases. PURPOSE: The objective was to evaluate the inhibitory effect of Hypericum afrum and Cytisus villosus against MAO-A and B and to isolate the compounds responsible for the MAO-inhibitory activity. METHODS: The inhibitory effect of extracts and purified constituents of H. afrum and C. villosus were investigated in vitro using recombinant human MAO-A and B, and through bioassay-guided fractionation of ethyl acetate fractions of areal parts of the two plants collected in northeastern Algeria. In addition, computational protein-ligand docking and molecular dynamics simulations were carried out to explain the MAO binding at the molecular level. RESULTS: The ethyl acetate (EtOAc) fractions of H. afrum and C. villosus showed the highest MAO inhibition activity against MAO A and B with IC50 values of 3.37 µg/ml and 13.50 µg/ml as well as 5.62 and 1.87 µg/ml, respectively. Bioassay-guided fractionation of the EtOAc fractions resulted in the purification and identification of the known flavonoids quercetin, myricetin, genistein and chrysin as the principal MAO-inhibitory constituents. Their structures were established by extensive 1 and 2D NMR studies and mass spectrometry. Quercetin, myricetin and chrysin showed potent inhibitory activity towards MAO-A with IC50 values of 1.52, 9.93 and 0.25 µM, respectively, while genistein more efficiently inhibited MAO-B (IC50 value: 0.65 µM). The kinetics of the inhibition and the study of dialysis dissociation of the complex of quercetin and myricetin and the isoenzyme MAO-A showed competitive and mixed inhibition, respectively. Both compounds showed reversible binding. Molecular docking experiments and molecular dynamics simulations allowed to estimate the binding poses and to identify the most important residues involved in the selective recognition of molecules in the MAOs enzymatic clefts. CONCLUSION: Quercetin and myricetin isolated from H. afrum together with genistein and chrysin isolated from C. villosus have been identified as potent MAO-A and -B inhibitors. H. afrum and C. villosus have properties indicative of potential neuroprotective ability and may be new candidates for selective MAO-A and B inhibitors.


Asunto(s)
Flavonoides/farmacología , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/química , Plantas Medicinales/química , Argelia , Cytisus/química , Evaluación Preclínica de Medicamentos , Flavonoides/química , Humanos , Hypericum/química , Concentración 50 Inhibidora , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Monoaminooxidasa/metabolismo , Quercetina/farmacología
20.
Eur J Med Chem ; 143: 983-996, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29232588

RESUMEN

Photooxygenation of Δ8 tetrahydrocannabinol (Δ8-THC), Δ9 tetrahydrocannabinol (Δ9-THC), Δ9 tetrahydrocannabinolic acid (Δ9-THCA) and some derivatives (acetate, tosylate and methyl ether) yielded 24 oxygenated derivatives, 18 of which were new and 6 were previously reported, including allyl alcohols, ethers, quinones, hydroperoxides, and epoxides. Testing these compounds for their modulatory effect on cannabinoid receptors CB1 and CB2 led to the identification of 7 and 21 as CB1 partial agonists with Ki values of 0.043 µM and 0.048 µM, respectively and 23 as a cannabinoid with high binding affinity for CB2 with Ki value of 0.0095 µM, but much less affinity towards CB1 (Ki 0.467 µM). The synthesized compounds showed cytotoxic activity against cancer cell lines (SK-MEL, KB, BT-549, and SK-OV-3) with IC50 values ranging from 4.2 to 8.5 µg/mL. Several of those compounds showed antimicrobial, antimalarial and antileishmanial activities, with compound 14 being the most potent against various pathogens.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antimaláricos/farmacología , Antineoplásicos/farmacología , Antiprotozoarios/farmacología , Cannabinoides/farmacología , Oxígeno Singlete/química , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antimaláricos/síntesis química , Antimaláricos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Bacterias/efectos de los fármacos , Cannabinoides/síntesis química , Cannabinoides/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Hongos/efectos de los fármacos , Humanos , Leishmania major/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Pruebas de Sensibilidad Parasitaria , Procesos Fotoquímicos , Plasmodium falciparum/efectos de los fármacos , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA