Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Plant Sci ; 13: 987919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247602

RESUMEN

Cereal crops can be considered the basis of human civilization. Thus, it is not surprising that these crops are grown in larger quantities worldwide than any other food supply and provide more energy to humankind than any other provision. Additionally, attempts to harness biomass consumption continue to increase to meet human energy needs. The high pressures for energy will determine the demand for crop plants as resources for biofuel, heat, and electricity. Thus, the search for plant traits associated with genetic increases in yield is mandatory. In multicellular organisms, including plants, growth and development are driven by cell division. These processes require a sequence of intricated events that are carried out by various protein complexes and molecules that act punctually throughout the cycle. Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. Considering the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. Studies on plant APC/C subunits and activators, mainly in the model plant Arabidopsis, revealed that they play a pivotal role in several developmental processes during growth. However, little is known about the role of APC/C in cereal crops. Here, we discuss the current understanding of the APC/C controlling cereal crop development.

2.
Front Plant Sci ; 12: 563760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887878

RESUMEN

The anaphase promoting complex/cyclosome (APC/C), a member of the E3 ubiquitin ligase family, plays an important role in recognizing the substrates to be ubiquitylated. Progression of anaphase, and therefore, of the cell cycle, is coordinated through cyclin degradation cycles dependent on proteolysis triggered by APC/C. The APC/C activity depends on the formation of a pocket comprising the catalytic subunits, APC2, APC11, and APC10. Among these, the role of APC11 outside the cell division cycle is poorly understood. Therefore, the goal of this work was to analyze the function of APC11 during plant development by characterizing apc11 knock-down mutant lines. Accordingly, we observed decreased apc11 expression in the mutant lines, followed by a reduction in meristem root size based on the cortical cell length, and an overall size diminishment throughout the development. Additionally, crosses of apc11-1 and amiR-apc11 with plants carrying a WUSCHEL-RELATED HOMEOBOX5 (WOX5) fluorescent marker showed a weakening of the green fluorescent protein-positive cells in the Quiescent Center. Moreover, plants with apc11-1 show a decreased leaf area, together with a decrease in the cell area when the shoot development was observed by kinematics analysis. Finally, we observed a decreased APC/C activity in the root and shoot meristems in crosses of pCYCB1;1:D-box-GUS with apc11-1 plants. Our results indicate that APC11 is important in the early stages of development, mediating meristematic architecture through APC/C activity affecting the overall plant growth.

3.
Front Plant Sci ; 12: 642934, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33719322

RESUMEN

Most eukaryotic species propagate through sexual reproduction that requires male and female gametes. In flowering plants, it starts through a single round of DNA replication (S phase) and two consecutive chromosome segregation (meiosis I and II). Subsequently, haploid mitotic divisions occur, which results in a male gametophyte (pollen grain) and a female gametophyte (embryo sac) formation. In order to obtain viable gametophytes, accurate chromosome segregation is crucial to ensure ploidy stability. A precise gametogenesis progression is tightly regulated in plants and is controlled by multiple mechanisms to guarantee a correct evolution through meiotic cell division and sexual differentiation. In the past years, research in the field has shown an important role of the conserved E3-ubiquitin ligase complex, Anaphase-Promoting Complex/Cyclosome (APC/C), in this process. The APC/C is a multi-subunit complex that targets proteins for degradation via proteasome 26S. The functional characterization of APC/C subunits in Arabidopsis, which is one of the main E3 ubiquitin ligase that controls cell cycle, has revealed that all subunits investigated so far are essential for gametophytic development and/or embryogenesis.

4.
Mol Biol Rep ; 40(12): 7093-102, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24178345

RESUMEN

The anaphase-promoting complex (APC) plays pivotal roles in cell cycle pathways related to plant development. In this study, we present evidence that overproduction of APC10 from Arabidopsis thaliana in tobacco (Nicotiana tabacum) plants promotes significant increases in biomass. Analyzes of plant's fresh and dried weight, root length, number of days to flower and number of seeds of plants overexpressing AtAPC10 verified an improved agronomic performance of the transgenic plants. Detailed analyzes of the leaf growth at the cellular level, and measurements of leaf cell number, showed that AtAPC10 also produce more cells, showing an enhancement of proliferation in these plants. In addition, crossing of plants overexpressing AtAPC10 and AtCDC27a resulted in a synergistic accumulation of biomass and these transgenic plants exhibited superior characteristics compared to the parental lines. The results of the present study suggest that transgenic plants expressing AtAPC10 and AtAPC10/AtCDC27a concomitantly are promising leads to develop plants with higher biomass.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Biomasa , Proteínas de Ciclo Celular/genética , Genes de Plantas , Nicotiana/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Recuento de Células , Proteínas de Ciclo Celular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Desarrollo de la Planta , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
5.
Plant Cell ; 23(5): 1876-88, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21558544

RESUMEN

Despite its relevance for agricultural production, environmental stress-induced growth inhibition, which is responsible for significant yield reductions, is only poorly understood. Here, we investigated the molecular mechanisms underlying cell cycle inhibition in young proliferating leaves of the model plant Arabidopsis thaliana when subjected to mild osmotic stress. A detailed cellular analysis demonstrated that as soon as osmotic stress is sensed, cell cycle progression rapidly arrests, but cells are kept in a latent ambivalent state allowing a quick recovery (pause). Remarkably, cell cycle arrest coincides with an increase in 1-aminocyclopropane-1-carboxylate levels and the activation of ethylene signaling. Our work showed that ethylene acts on cell cycle progression via inhibition of cyclin-dependent kinase A activity independently of EIN3 transcriptional control. When the stress persists, cells exit the mitotic cell cycle and initiate the differentiation process (stop). This stop is reflected by early endoreduplication onset, in a process independent of ethylene. Nonetheless, the potential to partially recover the decreased cell numbers remains due to the activity of meristemoids. Together, these data present a conceptual framework to understand how environmental stress reduces plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Etilenos/farmacología , Transducción de Señal/fisiología , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ciclo Celular/efectos de los fármacos , Proliferación Celular , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Ósmosis , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/fisiología , Estrés Fisiológico , Factores de Tiempo , Transcriptoma
6.
Plant Mol Biol ; 71(3): 307-18, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19629716

RESUMEN

The Anaphase Promoting Complex (APC) controls CDK activity by targeting the ubiquitin-dependent proteolysis of S-phase and mitosis-promoting cyclins. Here, we report that the ectopic expression of the Arabidopsis CDC27a, an APC subunit, accelerates plant growth and results in plants with increased biomass production. CDC27a overexpression was associated to apical meristem restructuration, protoplasts with higher (3)H-thimidine incorporation and altered cell-cycle marker expression. Total protein extracts immunoprecipitated with a CDC27a antibody showed ubiquitin ligase activity, indicating that the Arabidopsis CDC27a gets incorporated into APC complexes. These results indicate a role of AtCDC27a in regulation of plant growth and raise the possibility that the activity of the APC and the rates of plant cell division could be regulated by the concentration of the CDC27a subunit.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Proteínas de Arabidopsis/metabolismo , Western Blotting , Proteínas de Ciclo Celular/metabolismo , División Celular , Línea Celular , Tamaño de la Célula , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Perfilación de la Expresión Génica , Inmunoprecipitación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Protoplastos/citología , Protoplastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Timidina/metabolismo , Nicotiana/citología , Nicotiana/metabolismo , Tritio/metabolismo , Ubiquitinación
7.
Cell Cycle ; 5(17): 1957-65, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16940752

RESUMEN

Sister-chromatid separation and exit from mitosis require ubiquitin-mediated proteolysis of cell cycle regulators such as cyclin B and securin. The specificity of the reaction is controlled by an ubiquitin-ligase multiprotein complex known as APC (Anaphase Promoting Complex). Comparison of the coding sequences of Arabidopsis genes with the Genbank database reveals extensive homology of the predicted ORFs with the corresponding proteins of other eukaryotes, indicating that the APC is well conserved in plants. However, different from other eukaryotes, the Arabidopsis genes have some particular characteristics, such as the presence of two copies of the CDC27 gene. Furthermore, expression analyses of the AtAPC genes disclose complex profiles that differ, depending on the tissue examined. In actively dividing cell suspensions there is a direct correspondence between the rates of proliferation and mRNA levels from the AtAPC components. On the other hand, in plant organs, dark-grown seedlings and during leaf growth, this correlation is lost and the AtAPC genes are highly expressed in tissues with low overall cell division. Moreover, expression patterns diverge between the subunit genes, raising the possibility that there could be more than one form of the APC, which would execute distinct functions during plant development. The results suggest that an important layer of regulation of APC/C in plants could operate through subunit availability in specific tissues and/or cellular compartments.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Complejos de Ubiquitina-Proteína Ligasa/genética , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Hojas de la Planta/crecimiento & desarrollo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Distribución Tisular , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
8.
Genet. mol. biol ; 24(1/4): 61-68, 2001. ilus, tab
Artículo en Inglés | LILACS | ID: lil-313874

RESUMEN

Resultados recentes da pesquisa sobre divisäo celular em plantas sugerem que a maioria dos reguladores fundamentais do ciclo celular säo conservados em relaçäo aos outros organismos eucariotos, mas que os mecanismos de controle superimpostos à maquinária básica, e a sua integraçäo com o crescimento e desenvolvimento säo processos característicos das plantas. Até agora, a maioria dos estudos de divisäo celular em plantas tem sido conduzido em dicotiledôneas. Entretanto, as plantas monocotiledôneas tem estratégias de desenvolvimento próprias, que iräo afetar a regulaçäo da divisäo nos meristemas. Objetivando avançar o conhecimento de como a divisäo celular é integrada com os mecanismos básicos que controlam a progressäo do ciclo celular em monocotiledôneas, uma busca exaustiva por genes de cana de açúcar envolvidos em divisäo celular foi feita no banco de dados do SUCEST (sugarcane EST project). Os resultados obtidos incluem a descriçäo de várias classes de quinases dependentes de ciclinas (CDKs), de ciclinas do tipo A, B, C, D, e H; de proteínas que interagem com CDK; de quinases que ativam e inibem a atividade de CDKs, de proteínas homólogas ao gene retinoblastoma, e de fatores de expressäo da família E2F. Grande parte dos genes do ciclo celular de cana de açúcar parecem ser codificados por famílias multigênicas. Assim como em plantas dicotiledôneas a transcriçäo do CDK-a näo é restrita a celulas em divisäo, mas a grande maioria dos ESTs de CDK-b säo encontrados em regiões de alta proliferaçäo. A expressäo dos genes que codificam CKl é bem mais forte em regiões de pouca divisäo celular, notadamente em gemas laterais. Padrões de expressäo compartilhados de grupos de genes foi revelado por "Northern blot" digital, sugerindo que uma abordagem semelhante pode ser usada para identificar genes que participam da mesma via regulatória.


Asunto(s)
División Celular/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Ciclo Celular , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...