Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Brain ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753057

RESUMEN

Deubiquitination is critical for the proper functioning of numerous biological pathways such as DNA repair, cell cycle progression, transcription, signal transduction, and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and GeneMatching, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia, and distinctive facial characteristics including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set posteriorly rotated ears. In order to assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic ND.

2.
FEBS J ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466799

RESUMEN

Mutations in FBXO7 have been discovered to be associated with an atypical parkinsonism. We report here a new homozygous missense mutation in a paediatric patient that causes an L250P substitution in the dimerisation domain of Fbxo7. This alteration selectively ablates the Fbxo7-PI31 interaction and causes a significant reduction in Fbxo7 and PI31 levels in patient cells. Consistent with their association with proteasomes, patient fibroblasts have reduced proteasome activity and proteasome subunits. We also show PI31 interacts with the MiD49/51 fission adaptor proteins, and unexpectedly, PI31 acts to facilitate SCFFbxo7 -mediated ubiquitination of MiD49. The L250P mutation reduces the SCFFbxo7 ligase-mediated ubiquitination of a subset of its known substrates. Although MiD49/51 expression was reduced in patient cells, there was no effect on the mitochondrial network. However, patient cells show reduced levels of mitochondrial function and mitophagy, higher levels of ROS and are less viable under stress. Our study demonstrates that Fbxo7 and PI31 regulate proteasomes and mitochondria and reveals a new function for PI31 in enhancing the SCFFbxo7 E3 ubiquitin ligase activity.

3.
Mol Psychiatry ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418578

RESUMEN

The ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling and electrophysiological recordings indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the function of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, upon expression in neurons of dissociated or organotypic slice cultures, we found that both GluD1 mutants hampered metabotropic glutamate receptor mGlu1/5 signaling via Ca2+ and the ERK pathway and impaired dendrite morphology and excitatory synapse density. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system.

4.
Brain ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242634

RESUMEN

DNAJC6 encodes auxilin, a co-chaperone protein involved in clathrin-mediated endocytosis (CME) at the presynaptic terminal. Biallelic mutations in DNAJC6 cause a complex, early-onset neurodegenerative disorder characterized by rapidly progressive parkinsonism-dystonia in childhood. The disease is commonly associated with additional neurodevelopmental, neurological and neuropsychiatric features. Currently, there are no disease-modifying treatments for this condition, resulting in significant morbidity and risk of premature mortality. To investigate the underlying disease mechanisms in childhood-onset DNAJC6 parkinsonism, we generated induced pluripotent stem cells (iPSC) from three patients harboring pathogenic loss-of-function DNAJC6 mutations and subsequently developed a midbrain dopaminergic (mDA) neuronal model of disease. When compared to age-matched and CRISPR-corrected isogenic controls, the neuronal cell model revealed disease-specific auxilin deficiency as well as disturbance of synaptic vesicle (SV) recycling and homeostasis. We also observed neurodevelopmental dysregulation affecting ventral midbrain patterning and neuronal maturation. In order to explore the feasibility of a viral vector-mediated gene therapy approach, iPSC-derived neuronal cultures were treated with lentiviral DNAJC6 gene transfer, which restored auxilin expression and rescued CME. Our patient-derived neuronal model provides deeper insights into the molecular mechanisms of auxilin deficiency as well as a robust platform for the development of targeted precision therapy approaches.

5.
Genet Med ; 26(4): 101068, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38193396

RESUMEN

PURPOSE: Widespread application of next-generation sequencing, combined with data exchange platforms, has provided molecular diagnoses for countless families. To maximize diagnostic yield, we implemented an unbiased semi-automated genematching algorithm based on genotype and phenotype matching. METHODS: Rare homozygous variants identified in 2 or more affected individuals, but not in healthy individuals, were extracted from our local database of ∼12,000 exomes. Phenotype similarity scores (PSS), based on human phenotype ontology terms, were assigned to each pair of individuals matched at the genotype level using HPOsim. RESULTS: 33,792 genotype-matched pairs were discovered, representing variants in 7567 unique genes. There was an enrichment of PSS ≥0.1 among pathogenic/likely pathogenic variant-level pairs (94.3% in pathogenic/likely pathogenic variant-level matches vs 34.75% in all matches). We highlighted founder or region-specific variants as an internal positive control and proceeded to identify candidate disease genes. Variant-level matches were particularly helpful in cases involving inframe indels and splice region variants beyond the canonical splice sites, which may otherwise have been disregarded, allowing for detection of candidate disease genes, such as KAT2A, RPAIN, and LAMP3. CONCLUSION: Semi-automated genotype matching combined with PSS is a powerful tool to resolve variants of uncertain significance and to identify candidate disease genes.


Asunto(s)
Genotipo , Humanos , Fenotipo , Mutación , Homocigoto , Estudios de Asociación Genética
6.
J Med Genet ; 61(3): 289-293, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37833060

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDDs) impact both the development and functioning of the brain and exhibit clinical and genetic variability. RAP and RAB proteins, belonging to the RAS superfamily, are identified as established contributors to NDDs. However, the involvement of SGSM (small G protein signalling modulator), another member of the RAS family, in NDDs has not been previously documented. METHODS: Proband-only or trio exome sequencing was performed on DNA samples obtained from affected individuals and available family members. The variant prioritisation process focused on identifying rare deleterious variants. International collaboration aided in the identification of additional affected individuals. RESULTS: We identified 13 patients from 8 families of Ashkenazi Jewish origin who all carried the same homozygous frameshift variant in SGSM3 gene. The variant was predicted to cause a loss of function, potentially leading to impaired protein structure or function. The variant co-segregated with the disease in all available family members. The affected individuals displayed mild global developmental delay and mild to moderate intellectual disability. Additional prevalent phenotypes observed included hypotonia, behavioural challenges and short stature. CONCLUSIONS: An Ashkenazi Jewish homozygous founder variant in SGSM3 was discovered in individuals with NDDs and short stature. This finding establishes a connection between another member of the RAS family and NDDs. Additional research is needed to uncover the specific molecular mechanisms by which SGSM3 influences neurodevelopmental processes and the regulation of growth.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Judíos/genética , Homocigoto , Síndrome
7.
J Clin Immunol ; 44(1): 4, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38112969

RESUMEN

Mutations affecting T-cell receptor (TCR) signaling typically cause combined immunodeficiency (CID) due to varying degrees of disturbed T-cell homeostasis and differentiation. Here, we describe two cousins with CID due to a novel nonsense mutation in LCK and investigate the effect of this novel nonsense mutation on TCR signaling, T-cell function, and differentiation. Patients underwent clinical, genetic, and immunological investigations. The effect was addressed in primary cells and LCK-deficient T-cell lines after expression of mutated LCK. RESULTS: Both patients primarily presented with infections in early infancy. The LCK mutation led to reduced expression of a truncated LCK protein lacking a substantial part of the kinase domain and two critical regulatory tyrosine residues. T cells were oligoclonal, and especially naïve CD4 and CD8 T-cell counts were reduced, but regulatory and memory including circulating follicular helper T cells were less severely affected. A diagnostic hallmark of this immunodeficiency is the reduced surface expression of CD4. Despite severely impaired TCR signaling mTOR activation was partially preserved in patients' T cells. LCK-deficient T-cell lines reconstituted with mutant LCK corroborated partially preserved signaling. Despite detectable differentiation of memory and effector T cells, their function was severely disturbed. NK cell cytotoxicity was unaffected. Residual TCR signaling in LCK deficiency allows for reduced, but detectable T-cell differentiation, while T-cell function is severely disturbed. Our findings expand the previous report on one single patient on the central role of LCK in human T-cell development and function.


Asunto(s)
Síndromes de Inmunodeficiencia , Enfermedades de Inmunodeficiencia Primaria , Humanos , Codón sin Sentido , Síndromes de Inmunodeficiencia/diagnóstico , Síndromes de Inmunodeficiencia/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/química , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Fosforilación , Enfermedades de Inmunodeficiencia Primaria/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
8.
Am J Hum Genet ; 110(12): 2112-2119, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37963460

RESUMEN

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WW domain-binding protein 4 (WBP4) is part of the early spliceosomal complex and has not been previously associated with human pathologies in the Online Mendelian Inheritance in Man (OMIM) database. Through GeneMatcher, we identified ten individuals from eight families with a severe neurodevelopmental syndrome featuring variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal, and gastrointestinal abnormalities. Genetic analysis revealed five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated a complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including in genes associated with abnormalities of the nervous system, potentially underlying the phenotypes of the probands. We conclude that bi-allelic variants in WBP4 cause a developmental disorder with variable presentations, adding to the growing list of human spliceosomopathies.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Humanos , Empalmosomas/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Síndrome , Malformaciones del Sistema Nervioso/genética , Pérdida de Heterocigocidad , Fenotipo
9.
Genome Biol ; 24(1): 216, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773136

RESUMEN

BACKGROUND: Oxidation Resistance 1 (OXR1) gene is a highly conserved gene of the TLDc domain-containing family. OXR1 is involved in fundamental biological and cellular processes, including DNA damage response, antioxidant pathways, cell cycle, neuronal protection, and arginine methylation. In 2019, five patients from three families carrying four biallelic loss-of-function variants in OXR1 were reported to be associated with cerebellar atrophy. However, the impact of OXR1 on cellular functions and molecular mechanisms in the human brain is largely unknown. Notably, no human disease models are available to explore the pathological impact of OXR1 deficiency. RESULTS: We report a novel loss-of-function mutation in the TLDc domain of the human OXR1 gene, resulting in early-onset epilepsy, developmental delay, cognitive disabilities, and cerebellar atrophy. Patient lymphoblasts show impaired cell survival, proliferation, and hypersensitivity to oxidative stress. These phenotypes are rescued by TLDc domain replacement. We generate patient-derived induced pluripotent stem cells (iPSCs) revealing impaired neural differentiation along with dysregulation of genes essential for neurodevelopment. We identify that OXR1 influences histone arginine methylation by activating protein arginine methyltransferases (PRMTs), suggesting OXR1-dependent mechanisms regulating gene expression during neurodevelopment. We model the function of OXR1 in early human brain development using patient-derived brain organoids revealing that OXR1 contributes to the spatial-temporal regulation of histone arginine methylation in specific brain regions. CONCLUSIONS: This study provides new insights into pathological features and molecular underpinnings associated with OXR1 deficiency in patients.


Asunto(s)
Cerebelo , Histonas , Proteínas Mitocondriales , Enfermedades Neurodegenerativas , Humanos , Arginina/genética , Arginina/metabolismo , Atrofia , Histonas/metabolismo , Metilación , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Cerebelo/patología
10.
J Biol Chem ; 299(8): 105012, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414152

RESUMEN

Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report the identification of two additional missense variants in IMPDH2 from affected individuals and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.


Asunto(s)
IMP Deshidrogenasa , Purinas , Humanos , Regulación Alostérica , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Mutación , Guanosina Trifosfato
11.
medRxiv ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425688

RESUMEN

Over two dozen spliceosome proteins are involved in human diseases, also referred to as spliceosomopathies. WBP4 (WW Domain Binding Protein 4) is part of the early spliceosomal complex, and was not described before in the context of human pathologies. Ascertained through GeneMatcher we identified eleven patients from eight families, with a severe neurodevelopmental syndrome with variable manifestations. Clinical manifestations included hypotonia, global developmental delay, severe intellectual disability, brain abnormalities, musculoskeletal and gastrointestinal abnormalities. Genetic analysis revealed overall five different homozygous loss-of-function variants in WBP4. Immunoblotting on fibroblasts from two affected individuals with different genetic variants demonstrated complete loss of protein, and RNA sequencing analysis uncovered shared abnormal splicing patterns, including enrichment for abnormalities of the nervous system and musculoskeletal system genes, suggesting that the overlapping differentially spliced genes are related to the common phenotypes of the probands. We conclude that biallelic variants in WBP4 cause a spliceosomopathy. Further functional studies are called for better understanding of the mechanism of pathogenicity.

12.
Genet Med ; 25(7): 100859, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37092538

RESUMEN

PURPOSE: The study aimed to clinically and molecularly characterize the neurodevelopmental disorder associated with heterozygous de novo variants in CNOT9. METHODS: Individuals were clinically examined. Variants were identified using exome or genome sequencing. These variants were evaluated using in silico predictions, and their functional relevance was further assessed by molecular models and research in the literature. The variants have been classified according to the criteria of the American College of Medical Genetics. RESULTS: We report on 7 individuals carrying de novo missense variants in CNOT9, p.(Arg46Gly), p.(Pro131Leu), and p.(Arg227His), and, recurrent in 4 unrelated individuals, p.(Arg292Trp). All affected persons have developmental delay/intellectual disability, with 5 of them showing seizures. Other symptoms include muscular hypotonia, facial dysmorphism, and behavioral abnormalities. Molecular modeling predicted that the variants are damaging and would lead to reduced protein stability or impaired recognition of interaction partners. Functional analyses in previous studies showed a pathogenic effect of p.(Pro131Leu) and p.(Arg227His). CONCLUSION: We propose CNOT9 as a novel gene for neurodevelopmental disorder and epilepsy.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Epilepsia/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Convulsiones/genética
13.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993700

RESUMEN

Inosine 5' monophosphate dehydrogenase (IMPDH) is a critical regulatory enzyme in purine nucleotide biosynthesis that is inhibited by the downstream product GTP. Multiple point mutations in the human isoform IMPDH2 have recently been associated with dystonia and other neurodevelopmental disorders, but the effect of the mutations on enzyme function has not been described. Here, we report identification of two additional affected individuals with missense variants in IMPDH2 and show that all of the disease-associated mutations disrupt GTP regulation. Cryo-EM structures of one IMPDH2 mutant suggest this regulatory defect arises from a shift in the conformational equilibrium toward a more active state. This structural and functional analysis provides insight into IMPDH2-associated disease mechanisms that point to potential therapeutic approaches and raises new questions about fundamental aspects of IMPDH regulation.

14.
Brain ; 146(4): 1420-1435, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36718090

RESUMEN

Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.


Asunto(s)
Paraplejía Espástica Hereditaria , Animales , Niño , Humanos , Paraplejía Espástica Hereditaria/genética , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Esfingolípidos/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
15.
J Med Genet ; 60(8): 791-796, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36581449

RESUMEN

BACKGROUND: MAPK-activated protein kinase 5 (MAPKAPK5) is an essential enzyme for diverse cellular processes. Dysregulation of the pathways regulated by MAPKAPK enzymes can lead to the development of variable diseases. Recently, homozygous loss-of-function variants in MAPKAPK5 were reported in four patients from three families presenting with a recognisable neurodevelopmental disorder, so-called 'neurocardiofaciodigital' syndrome. OBJECTIVE AND METHODS: In order to improve characterisation of the clinical features associated with biallelic MAPKAPK5 variants, we employed a genotype-first approach combined with reverse deep-phenotyping of three affected individuals. RESULTS: In the present study, we identified biallelic loss-of-function and missense MAPKAPK5 variants in three unrelated individuals from consanguineous families. All affected individuals exhibited a syndromic neurodevelopmental disorder characterised by severe global developmental delay, intellectual disability, characteristic facial morphology, brachycephaly, digital anomalies, hair and nail defects and neuroradiological findings, including cerebellar hypoplasia and hypomyelination, as well as variable vision and hearing impairment. Additional features include failure to thrive, hypotonia, microcephaly and genitourinary anomalies without any reported congenital heart disease. CONCLUSION: In this study, we consolidate the causality of loss of MAPKAPK5 function and further delineate the molecular and phenotypic spectrum associated with this new ultra-rare neurodevelopmental syndrome.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Humanos , Fenotipo , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidades del Desarrollo/genética
16.
J Clin Invest ; 133(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454632

RESUMEN

BACKGROUNDChronic pain is a debilitating illness with currently limited therapy, in part due to difficulties in translating treatments derived from animal models to patients. The transient receptor potential vanilloid 1 (TRPV1) channel is associated with noxious heat detection and inflammatory pain, and reports of adverse effects in human trials have hindered extensive efforts in the clinical development of TRPV1 antagonists as novel pain relievers.METHODSWe examined 2 affected individuals (A1 and A2) carrying a homozygous missense mutation in TRPV1, rendering the channel nonfunctional. Biochemical and functional assays were used to analyze the mutant channel. To identify possible phenotypes of the affected individuals, we performed psychophysical and medical examinations.RESULTSWe demonstrated that diverse TRPV1 activators, acting at different sites of the channel protein, were unable to open the cloned mutant channel. This finding was not a consequence of impairment in the expression, cellular trafficking, or assembly of protein subunits. The affected individuals were insensitive to application of capsaicin to the mouth and skin and did not demonstrate aversive behavior toward capsaicin. Furthermore, quantitative sensory testing of A1 revealed an elevated heat-pain threshold but also, surprisingly, an elevated cold-pain threshold and extensive neurogenic inflammatory, flare, and pain responses following application of the TRPA1 channel activator mustard oil.CONCLUSIONOur study provides direct evidence in humans for pain-related functional changes linked to TRPV1, which is a prime target in the development of pain relievers.FUNDINGSupported by the Israel Science Foundation (368/19); Teva's National Network of Excellence in Neuroscience grant (no. 0394886) and Teva's National Network of Excellence in Neuroscience postdoctoral fellowship.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Animales , Humanos , Capsaicina/farmacología , Nocicepción , Canales Catiónicos TRPV/metabolismo , Dolor/genética
17.
Eur J Hum Genet ; 31(2): 164-168, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36071243

RESUMEN

The yield of chromosomal microarray analysis (CMA) is well established in structurally normal fetuses (0.4-1.4%). We aimed to determine the incremental yield of exome sequencing (ES) in this population. From February 2017 to April 2022, 1,526 fetuses were subjected to ES; 482 of them were structurally normal (31.6%). Only pathogenic and likely pathogenic (P/LP) variants, per the American College of Medical Genetics and Genomics (ACMG) classification, were reported. Additionally, ACMG secondary findings relevant to childhood were reported. Four fetuses (4/482; 0.8%) had P/LP variants indicating a moderate to severe disease in ATP7B, NR2E3, SPRED1 and FGFR3, causing Wilson disease, Enhanced S-cone syndrome, Legius and Muenke syndromes, respectively. Two fetuses had secondary findings, in RET and DSP. Our data suggest that offering only CMA for structurally normal fetuses may provide false reassurance. Prenatal ES mandates restrictive analysis and careful management combined with pre and post-test genetic counseling.


Asunto(s)
Asesoramiento Genético , Genómica , Femenino , Embarazo , Humanos , Niño , Secuenciación del Exoma , Análisis por Micromatrices , Feto , Diagnóstico Prenatal
18.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897654

RESUMEN

Mutations in the KCNA1 gene, encoding the voltage-gated potassium channel Kv1.1, have been associated with a spectrum of neurological phenotypes, including episodic ataxia type 1 and developmental and epileptic encephalopathy. We have recently identified a de novo variant in KCNA1 in the highly conserved Pro-Val-Pro motif within the pore of the Kv1.1 channel in a girl affected by early onset epilepsy, ataxia and developmental delay. Other mutations causing severe epilepsy are located in Kv1.1 pore domain. The patient was initially treated with a combination of antiepileptic drugs with limited benefit. Finally, seizures and ataxia control were achieved with lacosamide and acetazolamide. The aim of this study was to functionally characterize Kv1.1 mutant channel to provide a genotype-phenotype correlation and discuss therapeutic options for KCNA1-related epilepsy. To this aim, we transfected HEK 293 cells with Kv1.1 or P403A cDNAs and recorded potassium currents through whole-cell patch-clamp. P403A channels showed smaller potassium currents, voltage-dependent activation shifted by +30 mV towards positive potentials and slower kinetics of activation compared with Kv1.1 wild-type. Heteromeric Kv1.1+P403A channels, resembling the condition of the heterozygous patient, confirmed a loss-of-function biophysical phenotype. Overall, the functional characterization of P403A channels correlates with the clinical symptoms of the patient and supports the observation that mutations associated with severe epileptic phenotype cluster in a highly conserved stretch of residues in Kv1.1 pore domain. This study also strengthens the beneficial effect of acetazolamide and sodium channel blockers in KCNA1 channelopathies.


Asunto(s)
Epilepsia , Canal de Potasio Kv.1.1 , Acetazolamida , Ataxia/tratamiento farmacológico , Ataxia/genética , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Células HEK293 , Humanos , Canal de Potasio Kv.1.1/química , Canal de Potasio Kv.1.1/genética , Mutación , Potasio
19.
Front Pediatr ; 10: 859034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656379

RESUMEN

Cleft lip and/or cleft palate are a common group of birth defects that further classify into syndromic and non-syndromic forms. The syndromic forms are usually accompanied by additional physical or cognitive abnormalities. Isolated cleft palate syndromes are less common; however, they are associated with a variety of congenital malformations and generally have an underlying genetic etiology. A single report in 2019 described a novel syndrome in three individuals, characterized by cleft palate, developmental delay and proliferative retinopathy due to a homozygous non-sense mutation in the LRRC32 gene encoding glycoprotein A repetitions predominant (GARP), a cell surface polypeptide crucial for the processing and maturation of transforming growth factor ß (TGF-ß). We describe a patient who presented with cleft palate, prenatal and postnatal severe growth retardation, global developmental delay, dysmorphic facial features and progressive vitreoretinopathy. Whole exome sequencing (WES) revealed a very rare homozygous missense variant in the LRRC32 gene, which resulted in substitution of a highly conserved isoleucine to threonine. Protein modeling suggested this variant may negatively affect GARP function on latent TGF-ß activation. In summary, our report further expands the clinical features of cleft palate, proliferative retinopathy and developmental delay syndrome and emphasizes the association of LRRC32 pathogenic variants with this new syndrome.

20.
Eur J Med Genet ; 65(6): 104513, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487417

RESUMEN

RBL2/p130 is one of three highly conserved members of the retinoblastoma (RB) protein family. It is strongly upregulated during neuronal differentiation and brain development, and is critical for survival of post-mitotic neurons. Similar to RB1, it has been implicated as a tumor suppressor gene and has been shown to be dysregulated in various types of cancer. Recent publications describe biallelic, germline loss of function variants in RBL2 in individuals with profound developmental delay. We report a child with profound developmental delay, microcephaly, and hypotonia, who developed fulminant exophthalmos at age 6 years. Brain MRI followed by a biopsy of an intra-orbital mass revealed a mesenchymal tumor. Post-surgical histopathologic examination of the resected tumor was compatible with diagnosis of nodular fasciitis. Exome sequencing from peripheral blood identified a biallelic frameshift variant (c.901dupT) in RBL2. Notably, no malignancies were reported in previous cases with RBL2 variants. This case provides a possible association between RBL2 and orbital tumors.


Asunto(s)
Fascitis , Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/genética , Proteína p130 Similar a la del Retinoblastoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...