Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569743

RESUMEN

Roughly 1% of the global population is susceptible to celiac disease (CD)-inheritable autoimmune inflammation of the small intestine caused by intolerance to gliadin proteins present in wheat, rye, and barley grains, and called gluten in wheat. Classical treatment is a life-long gluten-free diet, which is constraining and costly. An alternative approach is based upon the development and oral reception of effective peptidases that degrade in the stomach immunogenic proline- and glutamine-rich gliadin peptides, which are the cause of the severe reaction in the intestine. In previous research, we have established that the major digestive peptidase of an insect Tribolium castaneum-cathepsin L-hydrolyzes immunogenic prolamins after Gln residues but is unstable in the extremely acidic environment (pH 2-4) of the human stomach and cannot be used as a digestive aid. In this work, using molecular dynamics simulations, we discover the probable cause of the pH instability of cathepsin L-loss of the catalytically competent rotameric state of one of the active site residues, His 275. To "fix" the correct orientation of this residue, we designed a V277A mutant variant, which extends the range of stability of the peptidase in the acidic environment while retaining most of its activity. We suggest this protein as a lead glutenase for the development of oral medical preparation that fights CD and gluten intolerance in susceptible people.

2.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35806001

RESUMEN

Wheat gliadins contain a large amount of glutamine- and proline-rich peptides which are not hydrolyzed by human digestive peptidases and can cause autoimmune celiac disease and other forms of gluten intolerance in predisposed people. Peptidases that efficiently cleave such immunogenic peptides can be used in enzyme therapy. The stored product insect pest Tribolium castaneum efficiently hydrolyzes gliadins. The main digestive peptidase of T. castaneum is cathepsin L, which is from the papain C1 family with post-glutamine cleavage activity. We describe the isolation and characterization of T. castaneum recombinant procathepsin L (rpTcCathL1, NP_001164001), which was expressed in Pichia pastoris cells. The activation of the proenzyme was conducted by autocatalytic processing. The effects of pH and proenzyme concentration in the reaction mixture on the processing were studied. The mature enzyme retained high activity in the pH range from 5.0 to 9.0 and displayed high pH-stability from 4.0 to 8.0 at 20 °C. The enzyme was characterized according to electrophoretic mobility under native conditions, activity and stability at various pH values, a sensitivity to various inhibitors, and substrate specificity, and its hydrolytic effect on 8-, 10-, 26-, and 33-mer immunogenic gliadins peptides was demonstrated. Our results show that rTcCathL1 is an effective peptidase that can be used to develop a drug for the enzyme therapy of various types of gluten intolerance.


Asunto(s)
Enfermedad Celíaca , Tribolium , Animales , Catepsina L/genética , Precursores Enzimáticos , Gliadina , Glutamina , Humanos , Hidrólisis , Péptido Hidrolasas , Péptidos
3.
Genes (Basel) ; 13(3)2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35328000

RESUMEN

The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.


Asunto(s)
Escarabajos , Insecticidas , Aclimatación , Animales , Escarabajos/genética , Dominica , Larva/genética
4.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614021

RESUMEN

A detailed analysis of the complexes of proline-specific peptidases (PSPs) in the midgut transcriptomes of the larvae of agricultural pests Tenebrio molitor and Tribolium castaneum and in the genome of T. castaneum is presented. Analysis of the T. castaneum genome revealed 13 PSP sequences from the clans of serine and metal-dependent peptidases, of which 11 sequences were also found in the gut transcriptomes of both tenebrionid species' larvae. Studies of the localization of PSPs, evaluation of the expression level of their genes in gut transcriptomes, and prediction of the presence of signal peptides determining secretory pathways made it possible to propose a set of peptidases that can directly participate in the hydrolysis of food proteins in the larvae guts. The discovered digestive PSPs of tenebrionids in combination with the post-glutamine cleaving cysteine cathepsins of these insects effectively hydrolyzed gliadins, which are the natural food substrates of the studied pests. Based on the data obtained, a hypothetical scheme for the complete hydrolysis of immunogenic gliadin peptides by T. molitor and T. castaneum digestive peptidases was proposed. These results show promise regarding the development of a drug based on tenebrionid digestive enzymes for the enzymatic therapy of celiac disease and gluten intolerance.


Asunto(s)
Escarabajos , Péptido Hidrolasas , Animales , Hidrólisis , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Gliadina/genética , Gliadina/metabolismo , Transcriptoma , Prolina/metabolismo , Escarabajos/genética , Larva/metabolismo
5.
Pharmaceutics ; 13(10)2021 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-34683896

RESUMEN

To date, there is no effective treatment for celiac disease (CD, gluten enteropathy), an autoimmune disease caused by gluten-containing food. Celiac patients are supported by a strict gluten-free diet (GFD). However, in some cases GFD does not negate gluten-induced symptoms. Many patients with CD, despite following such a diet, retain symptoms of active disease due to high sensitivity even to traces of gluten. In addition, strict adherence to GFD reduces the quality of life of patients, as often it is difficult to maintain in a professional or social environment. Various pharmacological treatments are being developed to complement GFD. One promising treatment is enzyme therapy, involving the intake of peptidases with food to digest immunogenic gluten peptides that are resistant to hydrolysis due to a high prevalence of proline and glutamine amino acids. This narrative review considers the features of the main proline/glutamine-rich proteins of cereals and the conditions that cause the symptoms of CD. In addition, we evaluate information about peptidases from various sources that can effectively break down these proteins and their immunogenic peptides, and analyze data on their activity and preliminary clinical trials. Thus far, the data suggest that enzyme therapy alone is not sufficient for the treatment of CD but can be used as a pharmacological supplement to GFD.

6.
Data Brief ; 38: 107301, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34458527

RESUMEN

Tenebrio molitor is an important coleopteran model insect and agricultural pest from the Tenebrionidae family. We used RNA-Seq transcriptome data from T. molitor to annotate trypsin-like sequences from the chymotrypsin S1 family of serine peptidases, including sequences of active serine peptidases (SerP) and their inactive homologs (SerPH) in T. molitor transcriptomes. A total of 63 S1 family tryspin-like serine peptidase sequences were de novo assembled. Among the sequences, 58 were predicted to be active trypsins and five inactive SerPH. The length of preproenzyme and mature form of the predicted enzyme, position of signal peptide and proenzyme cleavage sites, molecular mass, active site and S1 substrate binding subsite residues, and transmembrane and regulatory domains were analyzed using bioinformatic tools. The data can be used for further physiological, biochemical, and phylogenetic study of tenebrionid pests and other animal systems.

7.
Front Mol Biosci ; 7: 578758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195423

RESUMEN

New substrates with glutamine in the P1-position are introduced for the assay of peptidases from the C1 papain family, with a general formula of Glp-Phe-Gln-X, where Glp is pyroglutamyl and X is pNA (p-nitroanilide) or AMC (4-amino-7-methylcoumaride). The substrates have a simple structure, and C1 cysteine peptidases of various origins cleave them with high efficiency. The main advantage of the substrates is their selectivity for cysteine peptidases of the C1 family. Peptidases of other clans, including serine trypsin-like peptidases, do not cleave glutamine-containing substrates. We demonstrate that using Glp-Phe-Gln-pNA in combination with a commercially available substrate, Z-Arg-Arg-pNA, provided differential determination of cathepsins L and B. In terms of specific activity and kinetic parameters, the proposed substrates offer improvement over the previously described alanine-containing prototypes. The efficiency and selectivity of the substrates was demonstrated by the example of chromatographic and electrophoretic analysis of a multi-enzyme digestive complex of stored product pests from the Tenebrionidae family.

8.
Biochim Biophys Acta Gen Subj ; 1864(9): 129636, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32433934

RESUMEN

BACKGROUND: Proline specific peptidases (PSPs) are a unique group of enzymes that specifically cleave bonds formed by a proline residue. The study of PSPs is important due to their role in the maturation and degradation of peptide hormones and neuropeptides. In addition, changes in the activity of PSPs can result in pathological conditions, including various types of cancer. SCOPE OF REVIEW: PSPs annotated from the Homo sapiens genome were compared and classified by their physicochemical and biochemical features and roles in vital processes. In addition to catalytic activity, we discuss non-enzymatic functions that may regulate cellular activity. MAJOR CONCLUSIONS: PSPs apparently have multiple functions in animals. Two functions rely on the catalytic activity of the enzyme: one involved in a regulatory pathway associated with the ability of many PSPs to hydrolyze peptide hormones and neuropeptides, and the other involved in the trophic pathway associated with the proteolysis of total cellular protein or Pro-containing dietary proteins in the digestive tract. PSPs also participate in signal transduction without proteolytic activity by forming protein-protein interactions that trigger or facilitate the performance of certain functions. GENERAL SIGNIFICANCE: PSPs are underestimated as a unique component of the normal human peptidase degradome, providing the body with free proline. A comparative analysis of PSPs can guide research to develop inhibitors that counteract the abnormalities associated with changes in PSP activity, and identify natural substrates of PSPs that will enable better understanding of the mechanisms of the action of PSPs in biological processes and disease.


Asunto(s)
Péptido Hidrolasas/metabolismo , Prolina/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Hidrólisis , Péptido Hidrolasas/química , Especificidad por Sustrato
9.
Genome Biol Evol ; 12(7): 1099-1188, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442304

RESUMEN

The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.


Asunto(s)
Especiación Genética , Genoma de los Insectos , Interacciones Huésped-Parásitos/genética , Himenópteros/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Elementos Transponibles de ADN , Femenino , Dosificación de Gen , Glicoproteínas/genética , Herbivoria/genética , Inmunidad/genética , Proteínas de Insectos/genética , Masculino , Familia de Multigenes , Receptores Odorantes/genética , Conducta Social , Visión Ocular/genética
10.
BMC Genomics ; 21(1): 227, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171258

RESUMEN

BACKGROUND: Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species' feeding and habitat traits, defining potential targets for pest management strategies. RESULTS: Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys' capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. CONCLUSIONS: Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls.


Asunto(s)
Heterópteros/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Secuenciación Completa del Genoma/métodos , Animales , Ecosistema , Transferencia de Gen Horizontal , Tamaño del Genoma , Heterópteros/clasificación , Especies Introducidas , Filogenia
11.
Anal Biochem ; 567: 45-50, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30528915

RESUMEN

A method is described for the direct detection of unstable cysteine peptidase activity in polyacrylamide gels after native electrophoresis using new selective fluorogenic peptide substrates, pyroglutamyl-phenylalanyl-alanyl-4-amino-7-methylcoumaride (Glp-Phe-Ala-AMC) and pyroglutamyl-phenylalanyl-alanyl-4-amino-7-trifluoromethyl-coumaride (Glp-Phe-Ala-AFC). The detection limit of the model enzyme papain was 17 pmol (0.29 µg) for Glp-Phe-Ala-AMC and 43 pmol (0.74 µg) for Glp-Phe-Ala-AFC, with increased sensitivity and selectivity compared to the traditional method of protein determination with Coomassie G-250 staining or detection of activity using chromogenic substrates. Using this method, we easily identified the target digestive peptidases of Tenebrio molitor larvae by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis. The method offers simplicity, high sensitivity, and selectivity compared to traditional methods for improved identification of unstable cysteine peptidases in multi-component biological samples.


Asunto(s)
Proteasas de Cisteína/análisis , Colorantes Fluorescentes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Animales , Proteasas de Cisteína/metabolismo , Colorantes Fluorescentes/metabolismo , Larva/enzimología , Alineación de Secuencia , Especificidad por Sustrato , Tenebrio/enzimología , Tenebrio/crecimiento & desarrollo
12.
BMC Genomics ; 19(1): 832, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463532

RESUMEN

BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.


Asunto(s)
Genoma , Heterópteros/genética , Heterópteros/fisiología , Proteínas de Insectos/genética , Adaptación Fisiológica , Animales , Evolución Molecular , Genómica , Heterópteros/clasificación , Fenotipo , Filogenia
13.
Sci Rep ; 8(1): 1931, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386578

RESUMEN

The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.


Asunto(s)
Agricultura , Escarabajos/genética , Genoma de los Insectos , Genómica , Solanum tuberosum/parasitología , Animales , Elementos Transponibles de ADN/genética , Evolución Molecular , Femenino , Regulación de la Expresión Génica , Variación Genética , Genética de Población , Interacciones Huésped-Parásitos/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/genética , Masculino , Anotación de Secuencia Molecular , Familia de Multigenes , Control Biológico de Vectores , Filogenia , Interferencia de ARN , Factores de Transcripción/metabolismo
14.
J Insect Physiol ; 106(Pt 2): 114-124, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28359776

RESUMEN

The gut is one of the primary interfaces between an insect and its environment. Understanding gene expression profiles in the insect gut can provide insight into interactions with the environment as well as identify potential control methods for pests. We compared the expression profiles of transcripts from the gut of larval stages of two coleopteran insects, Tenebrio molitor and Tribolium castaneum. These tenebrionids have different life cycles, varying in the duration and number of larval instars. T. castaneum has a sequenced genome and has been a model for coleopterans, and we recently obtained a draft genome for T. molitor. We assembled gut transcriptome reads from each insect to their respective genomes and filtered mapped reads to RPKM>1, yielding 11,521 and 17,871 genes in the T. castaneum and T. molitor datasets, respectively. There were identical GO terms in each dataset, and enrichment analyses also identified shared GO terms. From these datasets, we compiled an ortholog list of 6907 genes; 45% of the total assembled reads from T. castaneum were found in the top 25 orthologs, but only 27% of assembled reads were found in the top 25 T. molitor orthologs. There were 2281 genes unique to T. castaneum, and 2088 predicted genes unique to T. molitor, although improvements to the T. molitor genome will likely reduce these numbers as more orthologs are identified. We highlight a few unique genes in T. castaneum or T. molitor that may relate to distinct biological functions. A large number of putative genes expressed in the larval gut with uncharacterized functions (36 and 68% from T. castaneum and T. molitor, respectively) support the need for further research. These data are the first step in building a comprehensive understanding of the physiology of the gut in tenebrionid insects, illustrating commonalities and differences that may be related to speciation and environmental adaptation.


Asunto(s)
Tenebrio/metabolismo , Tribolium/metabolismo , Animales , Tracto Gastrointestinal/metabolismo , Perfilación de la Expresión Génica , Genoma de los Insectos , Larva/metabolismo , Masculino , Especificidad de la Especie , Tenebrio/genética , Tribolium/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-28660745

RESUMEN

Prolidase is a proline-specific metallopeptidase that cleaves imidodipeptides with C-terminal Pro residue. Prolidase was purified and characterized from the Tenebrio molitor larval midgut. The enzyme was localized in the soluble fraction of posterior midgut tissues, corresponding to a predicted cytoplasmic localization of prolidase according to the structure of the mRNA transcript. Expression of genes encoding prolidase and the major digestive proline-specific peptidase (PSP)-dipeptidyl peptidase 4-were similar. The pH optimum of T. molitor prolidase was 7.5, and the enzyme was inhibited by Z-Pro, indicating that it belongs to type I prolidases. In mammals, prolidase is particularly important in the catabolism of a proline-rich protein-collagen. We propose that T. molitor larval prolidase is a critical enzyme for the final stages of digestion of dietary proline-rich gliadins, providing hydrolysis of imidodipeptides in the cytoplasm of midgut epithelial cells. We propose that the products of hydrolysis are absorbed from the luminal contents by peptide transporters, which we have annotated in the T. molitor larval gut transcriptome. The origin of prolidase substrates in the insect midgut is discussed in the context of overall success of grain feeding insects.


Asunto(s)
Dipeptidasas/metabolismo , Gliadina/metabolismo , Proteínas de Insectos/metabolismo , Tenebrio/enzimología , Secuencia de Aminoácidos , Animales , Dipeptidasas/antagonistas & inhibidores , Dipeptidasas/aislamiento & purificación , Tracto Gastrointestinal/enzimología , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/aislamiento & purificación , Larva/enzimología , Proteínas de Transporte de Membrana/metabolismo , Especificidad por Sustrato , Transcriptoma
16.
Insect Biochem Mol Biol ; 76: 38-48, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27395781

RESUMEN

Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0-9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor.


Asunto(s)
Dipeptidil Peptidasa 4/genética , Proteínas de Insectos/genética , Tenebrio/genética , Secuencia de Aminoácidos , Animales , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Tracto Gastrointestinal/enzimología , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Larva/enzimología , Larva/genética , Larva/crecimiento & desarrollo , Alineación de Secuencia , Tenebrio/enzimología , Tenebrio/crecimiento & desarrollo
17.
PeerJ ; 4: e1581, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26819843

RESUMEN

The red flour beetle, Tribolium castaneum, is a major agricultural pest responsible for considerable loss of stored grain and cereal products worldwide. T. castaneum larvae have a highly compartmentalized gut, with cysteine peptidases mostly in the acidic anterior part of the midgut that are critical to the early stages of food digestion. In previous studies, we described 26 putative cysteine peptidase genes in T. castaneum (types B, L, O, F, and K) located mostly on chromosomes 3, 7, 8, and 10. In the present study, we hypothesized that specific cysteine peptidase genes could be associated with digestive functions for food processing based on comparison of gene expression profiles in different developmental stages, feeding and non-feeding. RNA-Seq was used to determine the relative expression of cysteine peptidase genes among four major developmental stages (egg, larvae, pupae, and adult) of T. castaneum. We also compared cysteine peptidase genes in T. castaneum to those in other model insects and coleopteran pests. By combining transcriptome expression, phylogenetic comparisons, response to dietary inhibitors, and other existing data, we identified key cysteine peptidases that T. castaneum larvae and adults use for food digestion, and thus new potential targets for biologically-based control products.

18.
BMC Genomics ; 16: 75, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25757364

RESUMEN

BACKGROUND: Larvae of the tenebrionids Tenebrio molitor and Tribolium castaneum have highly compartmentalized guts, with primarily cysteine peptidases in the acidic anterior midgut that contribute to the early stages of protein digestion. RESULTS: High throughput sequencing was used to quantify and characterize transcripts encoding cysteine peptidases from the C1 papain family in the gut of tenebrionid larvae. For T. castaneum, 25 genes and one questionable pseudogene encoding cysteine peptidases were identified, including 11 cathepsin L or L-like, 11 cathepsin B or B-like, and one each F, K, and O. The majority of transcript expression was from two cathepsin L genes on chromosome 10 (LOC659441 and LOC659502). For cathepsin B, the major expression was from genes on chromosome 3 (LOC663145 and LOC663117). Some transcripts were expressed at lower levels or not at all in the larval gut, including cathepsins F, K, and O. For T. molitor, there were 29 predicted cysteine peptidase genes, including 14 cathepsin L or L-like, 13 cathepsin B or B-like, and one each cathepsin O and F. One cathepsin L and one cathepsin B were also highly expressed, orthologous to those in T. castaneum. Peptidases lacking conservation in active site residues were identified in both insects, and sequence analysis of orthologs indicated that changes in these residues occurred prior to evolutionary divergence. Sequences from both insects have a high degree of variability in the substrate binding regions, consistent with the ability of these enzymes to degrade a variety of cereal seed storage proteins and inhibitors. Predicted cathepsin B peptidases from both insects included some with a shortened occluding loop without active site residues in the middle, apparently lacking exopeptidase activity and unique to tenebrionid insects. Docking of specific substrates with models of T. molitor cysteine peptidases indicated that some insect cathepsins B and L bind substrates with affinities similar to human cathepsin L, while others do not and have presumably different substrate specificity. CONCLUSIONS: These studies have refined our model of protein digestion in the larval gut of tenebrionid insects, and suggest genes that may be targeted by inhibitors or RNA interference for the control of cereal pests in storage areas.


Asunto(s)
Cisteína Endopeptidasas/genética , Microbioma Gastrointestinal/genética , Tenebrio/genética , Tribolium/genética , Animales , Catepsina B/genética , Catepsina L/genética , Sistema Digestivo , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Larva/genética , Proteolisis , Tenebrio/fisiología , Tribolium/fisiología
19.
Anal Biochem ; 449: 179-87, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24388866

RESUMEN

This study describes the design, synthesis, and use of selective peptide substrates for cysteine peptidases of the C1 papain family, important in many biological processes. The structure of the newly synthesized substrates is Glp-Xaa-Ala-Y (where Glp=pyroglutamyl; Xaa=Phe or Val; and Y=pNA [p-nitroanilide], AMC [4-amino-7-methylcoumaride], or AFC [4-amino-7-trifluoromethyl-coumaride]). Substrates were synthesized enzymatically to guarantee selectivity of the reaction and optical purity of the target compounds, simplifying the scheme of synthesis and isolation of products. The hydrolysis of the synthesized substrates was evaluated by C1 cysteine peptidases from different organisms and with different functions, including plant enzymes papain, bromelain, ficin, and mammalian lysosomal cathepsins B and L. The new substrates were selective for C1 cysteine peptidases and were not hydrolyzed by serine, aspartic, or metallo peptidases. We demonstrated an application of the selectivity of the synthesized substrates during the chromatographic separation of a multicomponent set of digestive peptidases from a beetle, Tenebrio molitor. Used in combination with the cysteine peptidase inhibitor E-64, these substrates were able to differentiate cysteine peptidases from peptidases of other classes in midgut extracts from T. molitor larvae and larvae of the genus Tribolium; thus, they are useful in the analysis of complex mixtures containing peptidases from different classes.


Asunto(s)
Proteasas de Cisteína/metabolismo , Pruebas de Enzimas/métodos , Colorantes Fluorescentes/metabolismo , Péptidos/metabolismo , Tenebrio/enzimología , Animales , Proteasas de Cisteína/aislamiento & purificación , Colorantes Fluorescentes/análisis , Hidrólisis , Modelos Moleculares , Péptidos/química , Especificidad por Sustrato , Tenebrio/metabolismo
20.
Insect Biochem Mol Biol ; 43(6): 501-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23499933

RESUMEN

Prolyl carboxypeptidase (PRCP) is a lysosomal proline specific serine peptidase that also plays a vital role in the regulation of physiological processes in mammals. In this report, we isolate and characterize the first PRCP in an insect. PRCP was purified from the anterior midgut of larvae of a stored product pest, Tenebrio molitor, using a three-step chromatography strategy, and it was determined that the purified enzyme was a dimer. The cDNA of PRCP was cloned and sequenced, and the predicted protein was identical to the proteomic sequences of the purified enzyme. The substrate specificity and kinetic parameters of the enzyme were determined. The T. molitor PRCP participates in the hydrolysis of the insect's major dietary proteins, gliadins, and is the first PRCP to be ascribed a digestive function. Our collective data suggest that the evolutionary enrichment of the digestive peptidase complex in insects with an area of acidic to neutral pH in the midgut is a result of the incorporation of lysosomal peptidases, including PRCP.


Asunto(s)
Carboxipeptidasas/aislamiento & purificación , Sistema Digestivo/enzimología , Prolil Hidroxilasas/química , Tenebrio/enzimología , Secuencia de Aminoácidos , Animales , Carboxipeptidasas/química , Carboxipeptidasas/genética , Hidrólisis , Larva/enzimología , Larva/genética , Datos de Secuencia Molecular , Prolil Hidroxilasas/genética , Prolil Hidroxilasas/aislamiento & purificación , Especificidad por Sustrato , Tenebrio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...