Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 14: 598548, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488348

RESUMEN

Previous studies demonstrated specific expression of transcription factor Tbr2 in unipolar brush cells (UBCs) of the cerebellum during development and adulthood. To further study UBCs and the role of Tbr2 in their development we examined UBC morphology in transgenic mouse lines (reporter and lineage tracer) and also examined the effects of Tbr2 deficiency in Tbr2 (MGI: Eomes) conditional knock-out (cKO) mice. In Tbr2 reporter and lineage tracer cerebellum, UBCs exhibited more complex morphologies than previously reported including multiple dendrites, bifurcating dendrites, and up to four dendritic brushes. We propose that "dendritic brush cells" (DBCs) may be a more apt nomenclature. In Tbr2 cKO cerebellum, mature UBCs were completely absent. Migration of UBC precursors from rhombic lip to cerebellar cortex and other nuclei was impaired in Tbr2 cKO mice. Our results indicate that UBC migration and differentiation are sensitive to Tbr2 deficiency. To investigate whether UBCs develop similarly in humans as in rodents, we studied Tbr2 expression in mid-gestational human cerebellum. Remarkably, Tbr2+ UBC precursors migrate along the same pathways in humans as in rodent cerebellum and disperse to create the same "fountain-like" appearance characteristic of UBCs exiting the rhombic lip.

2.
Front Neurosci ; 12: 571, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186101

RESUMEN

Epigenetic factors (EFs) regulate multiple aspects of cerebral cortex development, including proliferation, differentiation, laminar fate, and regional identity. The same neurodevelopmental processes are also regulated by transcription factors (TFs), notably the Pax6→ Tbr2→ Tbr1 cascade expressed sequentially in radial glial progenitors (RGPs), intermediate progenitors, and postmitotic projection neurons, respectively. Here, we studied the EF landscape and its regulation in embryonic mouse neocortex. Microarray and in situ hybridization assays revealed that many EF genes are expressed in specific cortical cell types, such as intermediate progenitors, or in rostrocaudal gradients. Furthermore, many EF genes are directly bound and transcriptionally regulated by Pax6, Tbr2, or Tbr1, as determined by chromatin immunoprecipitation-sequencing and gene expression analysis of TF mutant cortices. Our analysis demonstrated that Pax6, Tbr2, and Tbr1 form a direct feedforward genetic cascade, with direct feedback repression. Results also revealed that each TF regulates multiple EF genes that control DNA methylation, histone marks, chromatin remodeling, and non-coding RNA. For example, Tbr1 activates Rybp and Auts2 to promote the formation of non-canonical Polycomb repressive complex 1 (PRC1). Also, Pax6, Tbr2, and Tbr1 collectively drive massive changes in the subunit isoform composition of BAF chromatin remodeling complexes during differentiation: for example, a novel switch from Bcl7c (Baf40c) to Bcl7a (Baf40a), the latter directly activated by Tbr2. Of 11 subunits predominantly in neuronal BAF, 7 were transcriptionally activated by Pax6, Tbr2, or Tbr1. Using EFs, Pax6→ Tbr2→ Tbr1 effect persistent changes of gene expression in cell lineages, to propagate features such as regional and laminar identity from progenitors to neurons.

3.
Cell Rep ; 16(1): 92-105, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27320921

RESUMEN

Intermediate progenitors (IPs) amplify the production of pyramidal neurons, but their role in selective genesis of cortical layers or neuronal subtypes remains unclear. Using genetic lineage tracing in mice, we find that IPs destined to produce upper cortical layers first appear early in corticogenesis, by embryonic day 11.5. During later corticogenesis, IP laminar fates are progressively limited to upper layers. We examined the role of Tbr2, an IP-specific transcription factor, in laminar fate regulation using Tbr2 conditional mutant mice. Upon Tbr2 inactivation, fewer neurons were produced by immediate differentiation and laminar fates were shifted upward. Genesis of subventricular mitoses was, however, not reduced in the context of a Tbr2-null cortex. Instead, neuronal and laminar differentiation were disrupted and delayed. Our findings indicate that upper-layer genesis depends on IPs from many stages of corticogenesis and that Tbr2 regulates the tempo of laminar fate implementation for all cortical layers.


Asunto(s)
Corteza Cerebral/citología , Neuronas/citología , Células Madre/citología , Proteínas de Dominio T Box/metabolismo , Animales , Recuento de Células , Diferenciación Celular , Linaje de la Célula , Embrión de Mamíferos/citología , Regulación de la Expresión Génica , Ratones Noqueados , Mitosis , Actividad Motora , Neurogénesis , Proteínas de Dominio T Box/deficiencia , Factores de Transcripción/metabolismo
4.
Dev Dyn ; 243(3): 440-50, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24550175

RESUMEN

BACKGROUND: Development of the olfactory bulb (OB) is a complex process that requires contributions from several progenitor cell niches to generate neuronal diversity. Previous studies showed that Tbr2 is expressed during the generation of glutamatergic OB neurons in rodents. However, relatively little is known about the role of Tbr2 in the developing OB or in the subventricular zone-rostral migratory stream (SVZ-RMS) germinal niche that gives rise to many OB neurons. RESULTS: Here, we use conditional gene ablation strategies to knockout Tbr2 during embryonic mouse olfactory bulb morphogenesis, as well as during perinatal and adult neurogenesis from the SVZ-RMS niche, and describe the resulting phenotypes. We find that Tbr2 is important for the generation of mitral cells in the OB, and that the olfactory bulbs themselves are hypoplastic and disorganized in Tbr2 mutant mice. Furthermore, we show that the SVZ-RMS niche is expanded and disordered following loss of Tbr2, which leads to ectopic accumulation of neuroblasts in the RMS. Lastly, we show that adult glutamatergic neurogenesis from the SVZ is impaired by loss of Tbr2. CONCLUSIONS: Tbr2 is essential for proper morphogenesis of the OB and SVZ-RMS, and is important for the generation of multiple lineages of glutamatergic olfactory bulb neurons.


Asunto(s)
Morfogénesis/fisiología , Células-Madre Neurales/metabolismo , Bulbo Olfatorio/embriología , Neuronas Receptoras Olfatorias/embriología , Proteínas de Dominio T Box/metabolismo , Animales , Eliminación de Gen , Ratones , Ratones Mutantes , Células-Madre Neurales/citología , Bulbo Olfatorio/citología , Neuronas Receptoras Olfatorias/citología , Proteínas de Dominio T Box/genética
5.
J Neurosci ; 33(9): 4165-80, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447624

RESUMEN

The dentate gyrus (DG) is a unique cortical region whose protracted development spans the embryonic and early postnatal periods. DG development involves large-scale reorganization of progenitor cell populations, ultimately leading to the establishment of the subgranular zone neurogenic niche. In the developing DG, the T-box transcription factor Tbr2 is expressed in both Cajal-Retzius cells derived from the cortical hem that guide migration of progenitors and neurons to the DG, and intermediate neuronal progenitors born in the dentate neuroepithelium that give rise to granule neurons. Here we show that in mice Tbr2 is required for proper migration of Cajal-Retzius cells to the DG; and, in the absence of Tbr2, formation of the hippocampal fissure is abnormal, leading to aberrant development of the transhilar radial glial scaffold and impaired migration of progenitors and neuroblasts to the developing DG. Furthermore, loss of Tbr2 results in decreased expression of Cxcr4 in migrating cells, leading to a premature burst of granule neurogenesis during early embryonic development accompanied by increased cell death in mutant animals. Formation of the transient subpial neurogenic zone was abnormal in Tbr2 conditional knock-outs, and the stem cell population in the DG was depleted before proper establishment of the subgranular zone. These studies indicate that Tbr2 is explicitly required for morphogenesis of the DG and participates in multiple aspects of the intricate developmental process of this structure.


Asunto(s)
Giro Dentado/citología , Regulación del Desarrollo de la Expresión Génica/genética , Células-Madre Neurales/metabolismo , Neuronas/fisiología , Proteínas de Dominio T Box/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Bromodesoxiuridina , Diferenciación Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Giro Dentado/embriología , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neurogénesis/genética , Neuronas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Nicho de Células Madre/fisiología , Proteínas de Dominio T Box/genética , Tamoxifeno/farmacología , Proteínas Supresoras de Tumor/metabolismo
6.
J Neurosci ; 33(8): 3633-45, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426690

RESUMEN

P/Q-type voltage-gated calcium channels (Ca(v)2.1) play critical presynaptic and postsynaptic roles throughout the nervous system and have been implicated in a variety of neurological disorders. Here we report that mice with a genetic ablation of the Ca(v)2.1 pore-forming α(1A) subunit (α(1A)⁻/⁻) encoded by CACNA1a (Jun et al., 1999) suffer during postnatal development from increasing breathing disturbances that lead ultimately to death. Breathing abnormalities include decreased minute ventilation and a specific loss of sighs, which was associated with lung atelectasis. Similar respiratory alterations were preserved in the isolated in vitro brainstem slice preparation containing the pre-Bötzinger complex. The loss of Ca(v)2.1 was associated with an alteration in the functional dependency on N-type calcium channels (Ca(v)2.2). Blocking N-type calcium channels with conotoxin GVIA had only minor effects on respiratory activity in slices from control (CT) littermates, but abolished respiratory activity in all slices from α(1A)⁻/⁻ mice. The amplitude of evoked EPSPs was smaller in inspiratory neurons from α(1A)⁻/⁻ mice compared with CTs. Conotoxin GVIA abolished all EPSPs in inspiratory neurons from α(1A)⁻/⁻ mice, while the EPSP amplitude was reduced by only 30% in CT mice. Moreover, neuromodulation was significantly altered as muscarine abolished respiratory network activity in α(1A)⁻/⁻ mice but not in CT mice. We conclude that excitatory synaptic transmission dependent on N-type and P/Q-type calcium channels is required for stable breathing and sighing. In the absence of P/Q-type calcium channels, breathing, sighing, and neuromodulation are severely compromised, leading to early mortality.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Mecánica Respiratoria/fisiología , Animales , Animales Recién Nacidos , Tronco Encefálico/fisiología , Canales de Calcio Tipo N/deficiencia , Canales de Calcio Tipo P/deficiencia , Canales de Calcio Tipo P/fisiología , Canales de Calcio Tipo Q/deficiencia , Canales de Calcio Tipo Q/fisiología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Técnicas de Cultivo de Órganos , Mecánica Respiratoria/genética
7.
Proc Natl Acad Sci U S A ; 110(10): 4081-6, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431145

RESUMEN

The cortical area map is initially patterned by transcription factor (TF) gradients in the neocortical primordium, which define a "protomap" in the embryonic ventricular zone (VZ). However, mechanisms that propagate regional identity from VZ progenitors to cortical plate (CP) neurons are unknown. Here we show that the VZ, subventricular zone (SVZ), and CP contain distinct molecular maps of regional identity, reflecting different gene expression gradients in radial glia progenitors, intermediate progenitors, and projection neurons, respectively. The "intermediate map" in the SVZ is modulated by Eomes (also known as Tbr2), a T-box TF. Eomes inactivation caused rostrocaudal shifts in SVZ and CP gene expression, with loss of corticospinal axons and gain of corticotectal projections. These findings suggest that cortical areas and connections are shaped by sequential maps of regional identity, propagated by the Pax6 → Eomes → Tbr1 TF cascade. In humans, PAX6, EOMES, and TBR1 have been linked to intellectual disability and autism.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Tipificación del Cuerpo , Mapeo Encefálico , Corteza Cerebral/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Embarazo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética
8.
Cereb Cortex ; 23(8): 1884-900, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22735158

RESUMEN

Progenitor cells undergo a series of stable identity transitions on their way to becoming fully differentiated cells with unique identities. Each cellular transition requires that new sets of genes are expressed, while alternative genetic programs are concurrently repressed. Here, we investigated how the proneural gene Neurog2 simultaneously activates and represses alternative gene expression programs in the developing neocortex. By comparing the activities of transcriptional activator (Neurog2-VP16) and repressor (Neurog2-EnR) fusions to wild-type Neurog2, we first demonstrate that Neurog2 functions as an activator to both extinguish Pax6 expression in radial glial cells and initiate Tbr2 expression in intermediate neuronal progenitors. Similarly, we show that Neurog2 functions as an activator to promote the differentiation of neurons with a dorsal telencephalic (i.e., neocortical) identity and to block a ventral fate, identifying 2 Neurog2-regulated transcriptional programs involved in the latter. First, we show that the Neurog2-transcriptional target Tbr2 is a direct transcriptional repressor of the ventral gene Ebf1. Secondly, we demonstrate that Neurog2 indirectly turns off Etv1 expression, which in turn indirectly regulates the expression of the ventral proneural gene Ascl1. Neurog2 thus activates several genetic off-switches, each with distinct transcriptional targets, revealing an unappreciated level of specificity for how Neurog2 prevents inappropriate gene expression during neocortical development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neocórtex/embriología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Represoras/metabolismo , Activación Transcripcional , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , ADN/metabolismo , Ratones , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Proteínas Represoras/genética
9.
Proc Natl Acad Sci U S A ; 107(29): 13129-34, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20615956

RESUMEN

Areas and layers of the cerebral cortex are specified by genetic programs that are initiated in progenitor cells and then, implemented in postmitotic neurons. Here, we report that Tbr1, a transcription factor expressed in postmitotic projection neurons, exerts positive and negative control over both regional (areal) and laminar identity. Tbr1 null mice exhibited profound defects of frontal cortex and layer 6 differentiation, as indicated by down-regulation of gene-expression markers such as Bcl6 and Cdh9. Conversely, genes that implement caudal cortex and layer 5 identity, such as Bhlhb5 and Fezf2, were up-regulated in Tbr1 mutants. Tbr1 implements frontal identity in part by direct promoter binding and activation of Auts2, a frontal cortex gene implicated in autism. Tbr1 regulates laminar identity in part by downstream activation or maintenance of Sox5, an important transcription factor controlling neuronal migration and corticofugal axon projections. Similar to Sox5 mutants, Tbr1 mutants exhibit ectopic axon projections to the hypothalamus and cerebral peduncle. Together, our findings show that Tbr1 coordinately regulates regional and laminar identity of postmitotic cortical neurons.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mitosis , Neocórtex/citología , Neocórtex/embriología , Neuronas/citología , Animales , Biomarcadores/metabolismo , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Mutación/genética , Neocórtex/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Unión Proteica , Proteínas de Dominio T Box , Factores de Transcripción , Activación Transcripcional , Regulación hacia Arriba/genética
10.
Semin Pediatr Neurol ; 16(3): 155-63, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19778712

RESUMEN

Congenital malformations of the human hindbrain, including the cerebellum, are poorly understood largely because their recognition is a relatively recent advance for imaging diagnostics. Cerebellar malformations are the most obvious and best characterized hindbrain malformations due to their relative ease of viewing by magnetic resonance imaging and the recent identification of several causative genes (Millen et al. Curr Opin Neurobiol 18:12-19, 2008). Malformations of the pons and medulla have also been described both in isolation and in association with cerebellar malformations (Barkovich et al. Ann Neurol 62:625-639, 2007). Although little is understood regarding the specific developmental pathologies underlying hindbrain malformations in humans, much is known regarding the mechanisms and genes driving hindbrain development in vertebrate model organisms. Thus, studies in vertebrate models provide a developmental framework in which to categorize human hindbrain malformations and serve to provide information regarding disrupted developmental processes and candidate genes. Here, we survey the basic principles of vertebrate hindbrain development and integrate our current knowledge of human hindbrain malformations into this framework.


Asunto(s)
Encefalopatías/genética , Rombencéfalo/anomalías , Rombencéfalo/crecimiento & desarrollo , Animales , Sistema Nervioso Central/anomalías , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/patología , Cerebelo/anomalías , Cerebelo/crecimiento & desarrollo , Cerebelo/patología , Modelos Animales de Enfermedad , Humanos
11.
Dev Biol ; 335(1): 78-92, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19732764

RESUMEN

During development, Met signaling regulates a range of cellular processes including growth, differentiation, survival and migration. The Met gene encodes a tyrosine kinase receptor, which is activated by Hgf (hepatocyte growth factor) ligand. Altered regulation of human MET expression has been implicated in autism. In mouse, Met signaling has been shown to regulate cerebellum development. Since abnormalities in cerebellar structure have been reported in some autistic patients, we have used the zebrafish to address the role of Met signaling during cerebellar development and thus further our understanding of the molecular basis of autism. We find that zebrafish met is expressed in the cerebellar primordium, later localizing to the ventricular zone (VZ), with the hgf1 and hgf2 ligand genes expressed in surrounding tissues. Morpholino knockdown of either Met or its Hgf ligands leads to a significant reduction in the size of the cerebellum, primarily as a consequence of reduced proliferation. Met signaling knockdown disrupts specification of VZ-derived cell types, and also reduces granule cell numbers, due to an early effect on cerebellar proliferation and/or as an indirect consequence of loss of signals from VZ-derived cells later in development. These patterning defects preclude analysis of cerebellar neuronal migration, but we have found that Met signaling is necessary for migration of hindbrain facial motor neurons. In summary, we have described roles for Met signaling in coordinating growth and cell type specification within the developing cerebellum, and in migration of hindbrain neurons. These functions may underlie the correlation between altered MET regulation and autism spectrum disorders.


Asunto(s)
Trastorno Autístico/genética , Movimiento Celular/fisiología , Cerebelo , Nervio Facial/citología , Neuronas Motoras/fisiología , Proteínas Proto-Oncogénicas c-met , Proteínas de Pez Cebra , Pez Cebra , Animales , Animales Modificados Genéticamente , Trastorno Autístico/metabolismo , Proliferación Celular , Cerebelo/anatomía & histología , Cerebelo/embriología , Niño , Humanos , Ligandos , Ratones , Neuronas Motoras/citología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Dev Biol ; 314(2): 376-92, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18191121

RESUMEN

During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain.


Asunto(s)
Aminoacil-ARNt Sintetasas/fisiología , Desarrollo Embrionario/fisiología , Morfogénesis/fisiología , Rombencéfalo/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Ventrículos Cerebrales/embriología , Cartilla de ADN , Hibridación in Situ , Neuropéptidos/fisiología , Fenotipo , Prosencéfalo/embriología , ARN Mensajero/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
14.
Dev Biol ; 309(2): 358-72, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17651720

RESUMEN

Despite 30 years of Hox gene study, we have a remarkably limited knowledge of the downstream target genes that Hox transcription factors regulate to confer regional identity. Here, we have used a microarray approach to identify genes that function downstream of a single vertebrate Hox gene, zebrafish hoxb1a. This gene plays a critical and conserved role in vertebrate hindbrain development, conferring identity to hindbrain rhombomere (r) 4. For example, zebrafish Hoxb1a, similar to mouse Hoxb1, is required for the migration of r4-derived facial branchiomotor neurons into the posterior hindbrain. We have screened microarrays carrying more than 16,000 expressed sequence tags (ESTs) for genes that are differentially regulated in normal versus Hoxb1a-deficient r4 tissue. Using this approach, we have identified both positively and negatively regulated candidate Hoxb1a target genes. We have used in situ hybridization to validate twelve positively regulated Hoxb1a targets. These downstream targets are expressed in a variety of subdomains within r4, with one gene, a novel prickle homolog (pk1b), expressed specifically within the facial branchiomotor neurons. Using morpholino knock-down and cell transplantation, we demonstrate that the Hoxb1a target Prickle1b functions cell-autonomously to control facial neuron migration, a single aspect of r4 identity.


Asunto(s)
Proteínas Portadoras/biosíntesis , Proteínas de Homeodominio/metabolismo , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Movimiento Celular , Etiquetas de Secuencia Expresada , Cara/inervación , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas con Dominio LIM , Neuronas Motoras/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...