Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Atmos ; 4(2): 265-274, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38371605

RESUMEN

Aerosols formed and grown by gas-to-particle processes are a major contributor to smog and haze in megacities, despite the competition between growth and loss rates. Rapid growth rates from ammonium nitrate formation have the potential to sustain particle number in typical urban polluted conditions. This process requires supersaturation of gas-phase ammonia and nitric acid with respect to ammonium nitrate saturation ratios. Urban environments are inhomogeneous. In the troposphere, vertical mixing is fast, and aerosols may experience rapidly changing temperatures. In areas close to sources of pollution, gas-phase concentrations can also be highly variable. In this work we present results from nucleation experiments at -10 °C and 5 °C in the CLOUD chamber at CERN. We verify, using a kinetic model, how long supersaturation is likely to be sustained under urban conditions with temperature and concentration inhomogeneities, and the impact it may have on the particle size distribution. We show that rapid and strong temperature changes of 1 °C min-1 are needed to cause rapid growth of nanoparticles through ammonium nitrate formation. Furthermore, inhomogeneous emissions of ammonia in cities may also cause rapid growth of particles.

2.
Environ Sci Technol ; 58(3): 1615-1624, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206005

RESUMEN

Jet engines are important contributors to global CO2 emissions and release enormous numbers of ultrafine particles into different layers of the atmosphere. As a result, aviation emissions are affecting atmospheric chemistry and promote contrail and cloud formation with impacts on earth's radiative balance and climate. Furthermore, the corelease of nanoparticles together with carcinogenic polycyclic aromatic hydrocarbons (PAHs) affects air quality at airports. We studied exhausts of a widely used turbofan engine (CFM56-7B26) operated at five static thrust levels (idle, 7, 30, 65, and 85%) with conventional Jet A-1 fuel and a biofuel blend composed of hydro-processed esters and fatty acids (HEFA). The particles released, the chemical composition of condensable material, and the genotoxic potential of these exhausts were studied. At ground operation, particle number emissions of 3.5 and 0.5 × 1014 particles/kg fuel were observed with highest genotoxic potentials of 41300 and 8800 ng toxicity equivalents (TEQ)/kg fuel at idle and 7% thrust, respectively. Blending jet fuel with HEFA lowered PAH and particle emissions by 7-34% and 65-67% at idle and 7% thrust, respectively, indicating that the use of paraffin-rich biofuels is an effective measure to reduce the exposure of airport personnel to nanoparticles coated with genotoxic PAHs (Trojan horse effect).


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos , Nanopartículas , Hidrocarburos Policíclicos Aromáticos , Emisiones de Vehículos/análisis , Material Particulado/análisis , Aeronaves , Daño del ADN , Contaminantes Atmosféricos/análisis
3.
Environ Pollut ; 307: 119521, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35623573

RESUMEN

Health effects of particulate matter (PM) from aircraft engines have not been adequately studied since controlled laboratory studies reflecting realistic conditions regarding aerosols, target tissue, particle exposure and deposited particle dose are logistically challenging. Due to the important contributions of aircraft engine emissions to air pollution, we employed a unique experimental setup to deposit exhaust particles directly from an aircraft engine onto reconstituted human bronchial epithelia (HBE) at air-liquid interface under conditions similar to in vivo airways to mimic realistic human exposure. The toxicity of non-volatile PM (nvPM) from a CFM56-7B26 aircraft engine was evaluated under realistic engine conditions by sampling and exposing HBE derived from donors of normal and compromised health status to exhaust for 1 h followed by biomarker analysis 24 h post exposure. Particle deposition varied depending on the engine thrust levels with 85% thrust producing the highest nvPM mass and number emissions with estimated surface deposition of 3.17 × 109 particles cm-2 or 337.1 ng cm-2. Transient increase in cytotoxicity was observed after exposure to nvPM in epithelia derived from a normal donor as well as a decrease in the secretion of interleukin 6 and monocyte chemotactic protein 1. Non-replicated multiple exposures of epithelia derived from a normal donor to nvPM primarily led to a pro-inflammatory response, while both cytotoxicity and oxidative stress induction remained unaffected. This raises concerns for the long-term implications of aircraft nvPM for human pulmonary health, especially in occupational settings.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Aeronaves , Humanos , Material Particulado/análisis , Material Particulado/toxicidad , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidad
4.
Environ Sci Technol ; 55(21): 14576-14585, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34662519

RESUMEN

Nonvolatile particulate matter (nvPM) emissions from aircraft turbine engines deteriorate air quality and contribute to climate change. These emissions can be reduced using sustainable aviation fuels (SAFs). Here, we investigate the effects of a 32% SAF blend with fossil fuel on particle size distributions and nvPM emission indices of a widely used turbofan engine. The experiments were conducted in a test cell using a standardized sampling and measurement system. The geometric mean diameter (GMD) increased with thrust from ∼8 nm at idle to ∼40 nm at take-off, and the geometric standard deviation (GSD) was in the range of 1.74-2.01. The SAF blend reduced the GMD and GSD at each test point. The nvPM emission indices were reduced most markedly at idle by 70% in terms of nvPM mass and 60% in terms of nvPM number. The relative reduction of nvPM emissions decreased with the increasing thrust. The SAF blend reduced the nvPM emissions from the standardized landing and take-off cycle by 20% in terms of nvPM mass and 25% in terms of nvPM number. This work will help develop standardized models of fuel composition effects on nvPM emissions and evaluate the impacts of SAF on air quality and climate.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aviación , Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Material Particulado/análisis , Emisiones de Vehículos/análisis
5.
Commun Biol ; 2: 90, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854482

RESUMEN

Aircraft emissions contribute to local and global air pollution. Health effects of particulate matter (PM) from aircraft engines are largely unknown, since controlled cell exposures at relevant conditions are challenging. We examined the toxicity of non-volatile PM (nvPM) emissions from a CFM56-7B26 turbofan, the world's most used aircraft turbine using an unprecedented exposure setup. We combined direct turbine-exhaust sampling under realistic engine operating conditions and the Nano-Aerosol Chamber for In vitro Toxicity to deposit particles onto air-liquid-interface cultures of human bronchial epithelial cells (BEAS-2B) at physiological conditions. We evaluated acute cellular responses after 1-h exposures to diluted exhaust from conventional or alternative fuel combustion. We show that single, short-term exposures to nvPM impair bronchial epithelial cells, and PM from conventional fuel at ground-idle conditions is the most hazardous. Electron microscopy of soot reveals varying reactivity matching the observed cellular responses. Stronger responses at lower mass concentrations suggest that additional metrics are necessary to evaluate health risks of this increasingly important emission source.


Asunto(s)
Aeronaves , Bronquios , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Material Particulado/efectos adversos , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire , Biomarcadores , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo
6.
Environ Sci Technol ; 52(12): 6816-6824, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29787263

RESUMEN

PM2.5 pollution has become a global health concern, however its size-resolved health impact remains to be poorly elucidated. Here, ambient particulate matter (PM) were collected into 13 different size ranges (10 nm to 18 µm) and the mass, metal, endotoxin distributions, and related oxidative potential were investigated in two regions (Zürich, Switzerland and Beijing, China). Results showed that the two regions had remarkably different PM distribution patterns. Swiss urban samples had a mode around 40 nm with 23.3% of total PM mass, while Chinese samples featured two modes around 0.75 and 4.23 µm with 13.8-18.6% and 13.7-20.4% of total PM mass, respectively. Two peaks for endotoxin at 40-100 nm and 1-4 µm were observed in different regions. For PM-borne metals, Chinese samples had 67.6-100% of total Cd, As, and Pb in the size range of 0.1-1 µm, and Swiss samples had similar distributions of Cd and Pb but much lower total metals than Chinese samples. The PM oxidative potential varied greatly with sizes for different regions. Accordingly, the current practice, i.e., sole use of the mass concentration, could lead to inadequate health protection for one region, but unnecessary economic costs for another without achieving significant extra health benefits.


Asunto(s)
Contaminantes Atmosféricos , Beijing , China , Endotoxinas , Monitoreo del Ambiente , Estrés Oxidativo , Tamaño de la Partícula , Material Particulado , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...