Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 35(6): 1917-1935, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36970782

RESUMEN

Besides regulating splicing, the conserved spliceosome component SmD1 (Small nuclear ribonucleoprotein D1)b promotes posttranscriptional silencing of sense transgenes (S-PTGS [post-transcriptional genesilencing]). Here, we show that the conserved spliceosome component PRP39 (Pre-mRNA-processing factor 39)a also plays a role in S-PTGS in Arabidopsis thaliana. However, PRP39a and SmD1b actions appear distinct in both splicing and S-PTGS. Indeed, RNAseq-based analysis of expression level and alternative splicing in prp39a and smd1b mutants identified different sets of deregulated transcripts and noncoding RNAs. Moreover, double mutant analyses involving prp39a or smd1b and RNA quality control (RQC) mutants revealed distinct genetic interactions for SmD1b and PRP39a with nuclear RQC machineries, suggesting nonredundant roles in the RQC/PTGS interplay. Supporting this hypothesis, a prp39a smd1b double mutant exhibited enhanced suppression of S-PTGS compared to the single mutants. Because the prp39a and smd1b mutants (i) showed no major changes in the expression of PTGS or RQC components or in small RNA production and (ii) do not alter PTGS triggered by inverted-repeat transgenes directly producing dsRNA (IR-PTGS), PRP39a, and SmD1b appear to synergistically promote a step specific to S-PTGS. We propose that, independently from their specific roles in splicing, PRP39a and SmD1b limit 3'-to-5' and/or 5'-to-3' degradation of transgene-derived aberrant RNAs in the nucleus, thus favoring the export of aberrant RNAs to the cytoplasm where their conversion into double-stranded RNA (dsRNA) initiates S-PTGS.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Transgenes , ARN Interferente Pequeño/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Interferencia de ARN
2.
J Exp Med ; 219(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35802137

RESUMEN

Ionizing radiations (IR) alter hematopoietic stem cell (HSC) function on the long term, but the mechanisms underlying these effects are still poorly understood. We recently showed that IR induces the derepression of L1Md, the mouse young subfamilies of LINE-1/L1 retroelements. L1 contributes to gene regulatory networks. However, how L1Md are derepressed and impact HSC gene expression are not known. Here, we show that IR triggers genome-wide H3K9me3 decrease that occurs mainly at L1Md. Loss of H3K9me3 at intronic L1Md harboring NF-κB binding sites motifs but not at promoters is associated with the repression of HSC-specific genes. This is correlated with reduced NFKB1 repressor expression. TNF-α treatment rescued all these effects and prevented IR-induced HSC loss of function in vivo. This TNF-α/NF-κB/H3K9me3/L1Md axis might be important to maintain HSCs while allowing expression of immune genes during myeloid regeneration or damage-induced bone marrow ablation.


Asunto(s)
Células Madre Hematopoyéticas , Histonas , Elementos de Nucleótido Esparcido Largo , FN-kappa B , Factor de Necrosis Tumoral alfa , Animales , Células Madre Hematopoyéticas/metabolismo , Histonas/metabolismo , Ratones , FN-kappa B/metabolismo , Radiación Ionizante , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Exp Med ; 215(5): 1463-1480, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29615469

RESUMEN

Maintenance of genomic integrity is crucial for the preservation of hematopoietic stem cell (HSC) potential. Retrotransposons, spreading in the genome through an RNA intermediate, have been associated with loss of self-renewal, aging, and DNA damage. However, their role in HSCs has not been addressed. Here, we show that mouse HSCs express various retroelements (REs), including long interspersed element-1 (L1) recent family members that further increase upon irradiation. Using mice expressing an engineered human L1 retrotransposition reporter cassette and reverse transcription inhibitors, we demonstrate that L1 retransposition occurs in vivo and is involved in irradiation-induced persistent γH2AX foci and HSC loss of function. Thus, RE represents an important intrinsic HSC threat. Furthermore, we show that RE activity is restrained by thrombopoietin, a critical HSC maintenance factor, through its ability to promote a potent interferon-like, antiviral gene response in HSCs. This uncovers a novel mechanism allowing HSCs to minimize irradiation-induced injury and reinforces the links between DNA damage, REs, and antiviral immunity.


Asunto(s)
Antivirales/farmacología , Citoprotección/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Retroelementos/genética , Trombopoyetina/farmacología , Animales , Citoprotección/efectos de la radiación , Daño del ADN , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Humanos , Interferones/genética , Interferones/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Radiación Ionizante , Factores de Transcripción STAT/metabolismo
4.
Nucleic Acids Res ; 45(20): 11891-11907, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-28981840

RESUMEN

RNase III enzymes cleave double stranded (ds)RNA. This is an essential step for regulating the processing of mRNA, rRNA, snoRNA and other small RNAs, including siRNA and miRNA. Arabidopsis thaliana encodes nine RNase III: four DICER-LIKE (DCL) and five RNASE THREE LIKE (RTL). To better understand the molecular functions of RNase III in plants we developed a biochemical assay using RTL1 as a model. We show that RTL1 does not degrade dsRNA randomly, but recognizes specific duplex sequences to direct accurate cleavage. Furthermore, we demonstrate that RNase III and dsRNA binding domains (dsRBD) are both required for dsRNA cleavage. Interestingly, the four DCL and the three RTL that carry dsRBD share a conserved cysteine (C230 in Arabidopsis RTL1) in their dsRBD. C230 is essential for RTL1 and DCL1 activities and is subjected to post-transcriptional modification. Indeed, under oxidizing conditions, glutathionylation of C230 inhibits RTL1 cleavage activity in a reversible manner involving glutaredoxins. We conclude that the redox state of the dsRBD ensures a fine-tune regulation of dsRNA processing by plant RNase III.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , ARN Bicatenario/metabolismo , ARN de Planta/metabolismo , Proteínas Represoras/metabolismo , Regiones no Traducidas 3'/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Cisteína/genética , Glutatión/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Oxidación-Reducción , Dominios Proteicos , División del ARN , ARN Bicatenario/química , ARN Bicatenario/genética , ARN de Planta/química , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Motivos de Unión al ARN/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Homología de Secuencia de Ácido Nucleico
5.
Plant Cell ; 28(2): 426-38, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26842463

RESUMEN

RNA quality control (RQC) eliminates aberrant RNAs based on their atypical structure, whereas posttranscriptional gene silencing (PTGS) eliminates both aberrant and functional RNAs through the sequence-specific action of short interfering RNAs (siRNAs). The Arabidopsis thaliana mutant smd1b was identified in a genetic screen for PTGS deficiency, revealing the involvement of SmD1, a component of the Smith (Sm) complex, in PTGS. The smd1a and smd1b single mutants are viable, but the smd1a smd1b double mutant is embryo-lethal, indicating that SmD1 function is essential. SmD1b resides in nucleoli and nucleoplasmic speckles, colocalizing with the splicing-related factor SR34. Consistent with this, the smd1b mutant exhibits intron retention at certain endogenous mRNAs. SmD1 binds to RNAs transcribed from silenced transgenes but not nonsilenced ones, indicating a direct role in PTGS. Yet, mutations in the RQC factors UPFRAMESHIFT3, EXORIBONUCLEASE2 (XRN2), XRN3, and XRN4 restore PTGS in smd1b, indicating that SmD1 is not essential for but rather facilitates PTGS. Moreover, the smd1b mtr4 double mutant is embryo-lethal, suggesting that SmD1 is essential for mRNA TRANSPORT REGULATOR4-dependent RQC. These results indicate that SmD1 interplays with splicing, RQC, and PTGS. We propose that SmD1 facilitates PTGS by protecting transgene-derived aberrant RNAs from degradation by RQC in the nucleus, allowing sufficient amounts to enter cytoplasmic siRNA bodies to activate PTGS.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , ARN Interferente Pequeño/genética , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Genes Reporteros , Mutación , Interferencia de ARN , Empalme del ARN , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Ribonucleoproteínas/genética , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Alineación de Secuencia , Transgenes
6.
Plant Cell ; 28(2): 406-25, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26764378

RESUMEN

RNaseIII enzymes catalyze the cleavage of double-stranded RNA (dsRNA) and have diverse functions in RNA maturation. Arabidopsis thaliana RNASE THREE LIKE2 (RTL2), which carries one RNaseIII and two dsRNA binding (DRB) domains, is a unique Arabidopsis RNaseIII enzyme resembling the budding yeast small interfering RNA (siRNA)-producing Dcr1 enzyme. Here, we show that RTL2 modulates the production of a subset of small RNAs and that this activity depends on both its RNaseIII and DRB domains. However, the mode of action of RTL2 differs from that of Dcr1. Whereas Dcr1 directly cleaves dsRNAs into 23-nucleotide siRNAs, RTL2 likely cleaves dsRNAs into longer molecules, which are subsequently processed into small RNAs by the DICER-LIKE enzymes. Depending on the dsRNA considered, RTL2-mediated maturation either improves (RTL2-dependent loci) or reduces (RTL2-sensitive loci) the production of small RNAs. Because the vast majority of RTL2-regulated loci correspond to transposons and intergenic regions producing 24-nucleotide siRNAs that guide DNA methylation, RTL2 depletion modifies DNA methylation in these regions. Nevertheless, 13% of RTL2-regulated loci correspond to protein-coding genes. We show that changes in 24-nucleotide siRNA levels also affect DNA methylation levels at such loci and inversely correlate with mRNA steady state levels, thus implicating RTL2 in the regulation of protein-coding gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , ARN Interferente Pequeño/genética , Ribonucleasa III/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Metilación de ADN , Silenciador del Gen , Genes Reporteros , Sitios Genéticos/genética , Raíces de Plantas/genética , Raíces de Plantas/fisiología , ARN Bicatenario/genética , ARN Mensajero/genética , ARN de Planta/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética
7.
PLoS Biol ; 13(12): e1002326, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26696443

RESUMEN

Small RNAs play essential regulatory roles in genome stability, development, and responses to biotic and abiotic stresses in most eukaryotes. In plants, the RNaseIII enzyme DICER-LIKE1 (DCL1) produces miRNAs, whereas DCL2, DCL3, and DCL4 produce various size classes of siRNAs. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. We found that virus infection induces RTL1 expression, suggesting that this enzyme could play a role in plant-virus interaction. To first investigate the biochemical activity of RTL1 independent of virus infection, small RNAs were sequenced from transgenic plants constitutively expressing RTL1. These plants lacked almost all DCL2-, DCL3-, and DCL4-dependent small RNAs, indicating that RTL1 is a general suppressor of plant siRNA pathways. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by cleaving dsRNA prior to DCL2-, DCL3-, and DCL4-processing. The substrate of RTL1 cleavage is likely long-perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from DCL1-processing of short-imperfect dsRNA. Virus infection induces RTL1 mRNA accumulation, but viral proteins that suppress RNA silencing inhibit RTL1 activity, suggesting that RTL1 has evolved as an inducible antiviral defense that could target dsRNA intermediates of viral replication, but that a broad range of viruses counteract RTL1 using the same protein toolbox used to inhibit antiviral RNA silencing. Together, these results reveal yet another level of complexity in the evolutionary battle between viruses and plant defenses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Virus ARN/fisiología , ARN de Planta/antagonistas & inhibidores , ARN Interferente Pequeño/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Sustitución de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carmovirus/fisiología , Biología Computacional/métodos , Cucumovirus/fisiología , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/virología , Mutación Puntual , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Tobamovirus/fisiología , Tymovirus/fisiología
8.
Plant Physiol ; 169(2): 1266-74, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26286717

RESUMEN

Second-site mutagenesis was performed on the argonaute1-33 (ago1-33) hypomorphic mutant, which exhibits reduced sense transgene posttranscriptional gene silencing (S-PTGS). Mutations in FIERY1, a positive regulator of the cytoplasmic 5'-to-3' EXORIBONUCLEASE4 (XRN4), and in SUPERKILLER3 (SKI3), a member of the SKI complex that threads RNAs directly to the 3'-to-5' exoribonuclease of the cytoplasmic exosome, compensated AGO1 partial deficiency and restored S-PTGS with 100% efficiency. Moreover, xrn4 and ski3 single mutations provoked the entry of nonsilenced transgenes into S-PTGS and enhanced S-PTGS on partially silenced transgenes, indicating that cytoplasmic 5'-to-3' and 3'-to-5' RNA degradation generally counteract S-PTGS, likely by reducing the amount of transgene aberrant RNAs that are used by the S-PTGS pathway to build up small interfering RNAs that guide transgene RNA cleavage by AGO1. Constructs generating improperly terminated transgene messenger RNAs (mRNAs) were not more sensitive to ski3 or xrn4 than regular constructs, suggesting that improperly terminated transgene mRNAs not only are degraded from both the 3' end but also from the 5' end, likely after decapping. The facts that impairment of either 5'-to-3' or 3'-to-5' RNA degradation is sufficient to provoke the entry of transgene RNA into the S-PTGS pathway, whereas simultaneous impairment of both pathways is necessary to provoke the entry of endogenous mRNA into the S-PTGS pathway, suggest poor RNA quality upon the transcription of transgenes integrated at random genomic locations.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Interferencia de ARN , Transgenes , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Plantas Modificadas Genéticamente , Poli A/genética , Poli A/metabolismo , ARN de Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
9.
Biochim Biophys Acta ; 1829(12): 1300-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24185199

RESUMEN

Eukaryotic organisms have evolved a variety of gene silencing pathways in which small RNAs, 20- to 30-nucleotides in length, repress the expression of sequence homologous genes at the transcriptional or post-transcriptional levels. In plants, RNA silencing pathways play important roles in regulating development and response to both biotic and abiotic stresses. The molecular basis of these complex and interconnected pathways has emerged only in recent years with the identification of many of the genes necessary for the biogenesis and action of small RNAs. This review covers the diversity of RNA silencing pathways identified in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Plantas/antagonistas & inhibidores , Plantas/genética , Procesamiento Postranscripcional del ARN , Transducción de Señal , Proteínas de Plantas/genética
10.
Proc Natl Acad Sci U S A ; 110(35): 14366-71, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940364

RESUMEN

Large deletions in the first intron of the With No lysine (K) 1 (WNK1) gene are responsible for Familial Hyperkalemic Hypertension (FHHt), a rare form of human hypertension associated with hyperkalemia and hyperchloremic metabolic acidosis. We generated a mouse model of WNK1-associated FHHt to explore the consequences of this intronic deletion. WNK1(+/FHHt) mice display all clinical and biological signs of FHHt. This phenotype results from increased expression of long WNK1 (L-WNK1), the ubiquitous kinase isoform of WNK1, in the distal convoluted tubule, which in turn, stimulates the activity of the Na-Cl cotransporter. We also show that the activity of the epithelial sodium channel is not altered in FHHt mice, suggesting that other mechanisms are responsible for the hyperkalemia and acidosis in this model. Finally, we observe a decreased expression of the renal outer medullary potassium channel in the late distal convoluted tubule of WNK1(+/FHHt) mice, which could contribute to the hyperkalemia. In summary, our study provides insights into the in vivo mechanisms underlying the pathogenesis of WNK1-mediated FHHt and further corroborates the importance of WNK1 in ion homeostasis and blood pressure.


Asunto(s)
Túbulos Renales Distales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/genética , Animales , Canales Epiteliales de Sodio/metabolismo , Eliminación de Gen , Ratones , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor , Canales de Potasio de Rectificación Interna/genética , Seudohipoaldosteronismo/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1
11.
Curr Opin Nephrol Hypertens ; 20(5): 541-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21670673

RESUMEN

PURPOSE OF REVIEW: This review aims to describe the recent findings obtained on the regulation of ion transport by microRNAs in physiological and pathological situations in different organs and organisms. RECENT FINDINGS: The number of ion channels or transporters can be regulated by increasing or decreasing the transcription and/or translation of the corresponding genes. In this context, a new class of regulators of gene expression has emerged as an important modulator of ion transport. microRNAs are short noncoding RNAs which inhibit gene expression by enhancing the degradation or inhibiting the translation of their targets. Most of the studies published so far describe their roles during embryonic development and tumorigenesis. However, recent studies have started to unravel how microRNA-mediated modulation of ion transport could contribute not only to the development of pathological states, such as heart disease, but also to the osmotic regulation of various organisms. SUMMARY: The contribution of microRNAs to the regulation of ion transport has only begun to be unraveled, mostly in cardiomyocytes. Only a few studies have focused on the kidney but they strongly suggest that microRNAs could play an important role in the regulation of renal ion transport in response to variation in daily food intake.


Asunto(s)
Proteínas de Transporte de Membrana/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Nefronas/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Transporte Iónico , Proteínas de Transporte de Membrana/metabolismo , Equilibrio Hidroelectrolítico/genética
12.
J Am Soc Nephrol ; 21(10): 1724-31, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20813867

RESUMEN

WNK1 and WNK4 encode two members of the WNK serine-threonine kinase subfamily. Greater WNK1 expression associates with higher BP. A combination of promoters, enhancers, repressors, and insulators regulate WNK1 expression, but whether microRNAs also modulate WNK1 expression is unknown. Here, computational analysis revealed the presence of a target sequence for miR-192 and miR-215 at the same site in the 3' untranslated region of the ubiquitous L- and the kidney-specific KS-WNK1. We functionally validated this target sequence by transient transfection and reporter assays. Although we observed expression of both miRs along the distal nephron, only miR-192 regulated endogenous WNK1 ex vivo. Furthermore, a potassium load, sodium depletion, and aldosterone infusion each significantly reduced miR-192 expression in the kidney. Taken together, these results suggest a miR-driven mechanism of gene regulation by aldosterone and a role for miR-192 in the regulation of sodium and potassium balance in the kidney.


Asunto(s)
Aldosterona/metabolismo , Túbulos Renales Distales/metabolismo , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Línea Celular , Perros , Ratones , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Sodio en la Dieta/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1
13.
Hypertension ; 52(6): 1149-54, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18955660

RESUMEN

Large deletions in intron 1 of the with-no-lysine kinase type 1 (WNK1) gene cause familial hyperkalemic hypertension. Alternative promoters generate functionally different isoforms: long ubiquitous isoforms (L-WNK1) and a kidney-specific isoform (KS-WNK1) lacking kinase activity. It remains unclear whether the disease-causing mutations selectively modify the synthesis of 1 or both types of isoforms. Using a transgenic mouse model, we found that intron 1 deletion resulted in the overexpression of L- and KS-WNK1 in the distal convoluted tubule and ubiquitous ectopic KS-WNK1 expression. Phylogenetic and functional analysis of the minimal 22-kb intron 1 deletion identified 1 repressor and 1 insulator, potentially preventing interactions between the regulatory elements of L-WNK1 and KS-WNK1. These results provide the first insight into the molecular mechanisms of WNK1-induced familial hyperkalemic hypertension.


Asunto(s)
Hiperpotasemia/genética , Hipertensión Renal/genética , Riñón/fisiología , Proteínas Serina-Treonina Quinasas/genética , Animales , Encéfalo/fisiología , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Perros , Células Madre Embrionarias/fisiología , Femenino , Eliminación de Gen , Genes Reporteros , Humanos , Hiperpotasemia/fisiopatología , Hipertensión Renal/fisiopatología , Péptidos y Proteínas de Señalización Intracelular , Intrones/genética , Riñón/citología , Leucocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor , Músculo Esquelético/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Especificidad de la Especie , Proteína Quinasa Deficiente en Lisina WNK 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA