Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bone Miner Res ; 37(9): 1775-1786, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35711109

RESUMEN

Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication of antiresorptive or antiangiogenic medications, used in the treatment of bone malignancy or osteoporosis. Bone necrosis, mainly represented by osteocytic death, is always present in MRONJ sites; however, the role of osteocyte death in MRONJ pathogenesis is unknown. High mobility group box 1 (HMGB1) is a non-histone nucleoprotein that in its acetylated form accumulates in the cytoplasm, whereas non-acetylated HMGB1 localizes in the nucleus. SIRT1 deacetylase regulates cellular localization of HMGB1. Interestingly, HMGB1 is released during cell necrosis and promotes inflammation through signaling cascades, including activation of the RAGE receptor. Here, we utilized a well-established mouse MRONJ model that utilizes ligature-induced experimental periodontitis (EP) and treatment with either vehicle or zolendronic acid (ZA). Initially, we evaluated HMGB1-SIRT1 expression in osteocytes at 1, 2, and 4 weeks of treatment. Significantly increased cytoplasmic and perilacunar HMGB1 expression was observed at EP sites of ZA versus vehicle (Veh) animals at all time points. SIRT1 colocalized with cytoplasmic HMGB1 and presented a statistically significant increased expression at the EP sites of ZA animals for all time points. RAGE expression was significantly higher in the submucosal tissues EP sites of ZA animals compared with those in vehicle group. To explore the significance of increased cytoplasmic and extracellular HMGB1 and increased RAGE expression in MRONJ pathogenesis, we used pharmacologic inhibitors of these molecules. Combined HMGB1/RAGE inhibition resulted in lower MRONJ incidence with statistically significant decrease in osteonecrotic areas and bone exposure versus non-inhibitor treated ZA animals. Together, our data point to the role of HMGB1 as a central alarmin, overexpressed at early phase of MRONJ pathogenesis during osteocytic death. Moreover, HMGB1-RAGE pathway may represent a new promising therapeutic target in patients at high risk of MRONJ. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Conservadores de la Densidad Ósea , Proteína HMGB1 , Osteonecrosis , Osteoporosis , Periodontitis , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/tratamiento farmacológico , Osteonecrosis de los Maxilares Asociada a Difosfonatos/epidemiología , Conservadores de la Densidad Ósea/efectos adversos , Difosfonatos/efectos adversos , Proteína HMGB1/efectos adversos , Proteína HMGB1/metabolismo , Incidencia , Ratones , Osteonecrosis/inducido químicamente , Osteonecrosis/tratamiento farmacológico , Osteoporosis/inducido químicamente , Sirtuina 1
2.
Adv Exp Med Biol ; 1280: 243-260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791987

RESUMEN

Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.


Asunto(s)
Neoplasias , Animales , Hipoxia de la Célula , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Redes y Vías Metabólicas , Neoplasias/genética , Neovascularización Patológica/genética
3.
J Cancer ; 10(27): 6915-6924, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31839827

RESUMEN

Objective: Since the introduction in 2004, global usage of e-cigarettes (ECs) has risen exponentially. However, the risks of ECs on oral health are uncertain. The purpose of this study is to understand if EC aerosol exposure impacts the gene pathways of normal human oral keratinocytes (NHOKs), particularly the unfolded protein response (UPR) pathway. Materials and methods: EC aerosols were generated reproducibly with a home-made puffing device and impinged into the culture medium for NHOKs. DNA microarrays were used to profile the gene expression changes in NHOKs treated with EC aerosols, and the Ingenuity Pathway Analysis (IPA) was used to reveal signaling pathways altered by the EC aerosols. Quantitative PCR was used to validate the expression changes of significantly altered genes. Results: DNA microarray profiling followed by IPA revealed a number of signaling pathways, such as UPR, cell cycle regulation, TGF-ß signaling, NRF2-mediated oxidative stress response, PI3K/AKT signaling, NF-κB signaling, and HGF signaling, activated by EC aerosols in NHOKs. The UPR pathway genes, C/EBP homologous protein (CHOP), activating transcription factor 4 (ATF4), X box binding protein 1 (XBP1), and inositol-requiring enzyme 1 alpha (IRE1α) were all significantly up-regulated in EC aerosol-treated NHOKs whereas immunoglobulin heavy-chain binding protein (BIP) and PRKR-like ER kinase (PERK) were slightly up-regulated. qPCR analysis results were found to be well correlated with those from the DNA microarray analysis. The most significantly changed genes in EC aerosol-treated NHOKs versus untreated NHOKs were CHOP, ATF4, XBP1, IRE1α and BIP. Meanwhile, Western blot analysis confirmed that CHOP, GRP78 (BIP), ATF4, IRE1α and XBP1s (spliced XBP1) were significantly up-regulated in NHOKs treated with EC aerosols. Conclusion: Our results indicate that EC aerosols up-regulate the UPR pathway genes in NHOKs, and the induction of UPR response is mediated by the PERK - EIF2α - ATF4 and IRE1α - XBP1 pathways.

4.
J Proteome Res ; 16(11): 3961-3968, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28915052

RESUMEN

Deregulated expression of SOX11 has been shown to be involved in the progression of various types of cancer. However, the role of SOX11 in head and neck cancer remains largely unknown. In this study, coimmunoprecipitation (Co-IP) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were performed to identify the proteins that bind to SOX11 at significantly higher levels in head and neck cancer cells than in normal human oral keratinocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that many potential SOX11-binding partners were associated with protein synthesis, cell metabolism, and cell-cell adhesion. One of the identified proteins, heat shock protein 90 alpha (HSP90α), was selected for further investigation. The binding of HSP90α with SOX11 in head and neck cancer cells was validated by Co-IP with western blotting. In addition, HSP90α was found to be remarkably overexpressed in head and neck cancer cell lines when compared to its level in normal human oral keratinocytes, and knockdown of HSP90α inhibited the proliferation and invasion capacity of these cancer cells. On the basis of The Cancer Genome Atlas (TCGA) data analysis, HSP90AA1 gene was overexpressed in head and neck cancer tissues compared to normal controls and increased HSP90AA1 gene expression was positively associated with extracapsular spread and clinical stage. Head and neck cancer patients with higher HSP90AA1 expression had significantly poorer long-term overall and disease-free survival rates than those with lower HSP90AA1 expression. Collectively, our studies indicate that SOX11 binds to HSP90α, a highly overexpressed protein that may promote invasion and progression of head and neck cancer cells.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias de Cabeza y Cuello/patología , Factores de Transcripción SOXC/metabolismo , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/mortalidad , Humanos , Inmunoprecipitación , Espectrometría de Masas/métodos , Unión Proteica , Análisis de Supervivencia
5.
Oncotarget ; 8(18): 30039-30049, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28404907

RESUMEN

Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease which might progress to mucosal-associated lymphoid tissue lymphoma (pSS/MALT). Diagnosis of pSS requires an invasive tissue biopsy and a delay in diagnosis of pSS has been frequently reported. In this study, four proteins including cofilin-1, alpha-enolase, annexin A2 and Rho GDP-dissociation inhibitor 2 (RGI2) were found to be over-expressed in pSS and pSS/MALT by 2D gel electrophoresis/mass spectrometry, and the finding was verified by the microarray analysis and western blotting results. We then developed enzyme-linked immunosorbent assays for autoantibodies including anti-cofilin-1, anti-alpha-enolase and anti-RGI2 with good quantitative ability. The expression levels of salivary anti-cofilin-1, anti-alpha-enolase and anti-RGI2 were found to be the highest in pSS/MALT patients and lowest in healthy controls. The combination of these three antiantibodies yielded an "area under the curve" (AUC) value of 0.94 with an 86% sensitivity and 93% specificity in distinguishing patients with pSS from healthy controls, an AUC value of 0.99 with a 95% sensitivity and 94% specificity in distinguishing patients with pSS/MALT from healthy controls and an AUC value of 0.86 with a 75% sensitivity and 94% specificity in distinguishing pSS/MALT patients from pSS patients. Collectively, we have successfully identified a panel of potential autoantigens that are progressively up-regulated during the development of pSS and its progression to MALT lymphoma. The autoantibody biomarkers may be used to help diagnose pSS and predict its progression to MALT lymphoma.


Asunto(s)
Autoanticuerpos/inmunología , Linfoma de Células B de la Zona Marginal/etiología , Síndrome de Sjögren/complicaciones , Síndrome de Sjögren/inmunología , Autoantígenos/inmunología , Biomarcadores , Estudios de Casos y Controles , Electroforesis en Gel Bidimensional , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Linfoma de Células B de la Zona Marginal/diagnóstico , Masculino , Espectrometría de Masas , Pronóstico , Proteómica/métodos , Curva ROC , Reproducibilidad de los Resultados , Saliva/inmunología , Síndrome de Sjögren/sangre , Síndrome de Sjögren/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA