Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 206(7): 328, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935150

RESUMEN

Marine hydrocarbonoclastic bacteria can use polycyclic aromatic hydrocarbons as carbon and energy sources, that makes these bacteria highly attractive for bioremediation in oil-polluted waters. However, genomic and metabolic differences between species are still the subject of study to understand the evolution and strategies to degrade PAHs. This study presents Rhodococcus ruber MSA14, an isolated bacterium from marine sediments in Baja California, Mexico, which exhibits adaptability to saline environments, a high level of intrinsic pyrene tolerance (> 5 g L- 1), and efficient degradation of pyrene (0.2 g L- 1) by 30% in 27 days. Additionally, this strain demonstrates versatility by using naphthalene and phenanthrene as individual carbon sources. The genome sequencing of R. ruber MSA14 revealed a genome spanning 5.45 Mbp, a plasmid of 72 kbp, and three putative megaplasmids, lengths between 110 and 470 Kbp. The bioinformatics analysis of the R. ruber MSA14 genome revealed 56 genes that encode enzymes involved in the peripheral and central pathways of aromatic hydrocarbon catabolism, alkane, alkene, and polymer degradation. Within its genome, R. ruber MSA14 possesses genes responsible for salt tolerance and siderophore production. In addition, the genomic analysis of R. ruber MSA14 against 13 reference genomes revealed that all compared strains have at least one gene involved in the alkanes and catechol degradation pathway. Overall, physiological assays and genomic analysis suggest that R. ruber MSA14 is a new haloalkalitolerant and hydrocarbonoclastic strain toward a wide range of hydrocarbons, making it a promising candidate for in-depth characterization studies and bioremediation processes as part of a synthetic microbial consortium, as well as having a better understanding of the catabolic potential and functional diversity among the Rhodococci group.


Asunto(s)
Biodegradación Ambiental , Genoma Bacteriano , Genómica , Sedimentos Geológicos , Hidrocarburos Policíclicos Aromáticos , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Sedimentos Geológicos/microbiología , Naftalenos/metabolismo , Filogenia , Fenantrenos/metabolismo , Tolerancia a la Sal , Pirenos
2.
Arch Microbiol ; 204(3): 180, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35175407

RESUMEN

Environmental pollution as a result of heavy metals (HMs) is a worldwide problem and the implementation of eco-friendly remediation technologies is thus required. Metallophores, low molecular weight compounds, could have important biotechnological applications in the fields of agriculture, medicine, and bioremediation. This study aimed to isolate HM-resistant bacteria from soils and sediments of the Lerma-Chapala Basin and evaluated their abilities to produce metallophores and to promote plant growth. Bacteria from the Lerma-Chapala Basin produced metallophores for all the tested metal ions, presented a greater production of As3+ metallophores, and showed high HM resistance especially to Zn2+, As5+, and Ni2+. A total of 320 bacteria were isolated with 170 strains showing siderophores synthesis. Members of the Delftia and Pseudomonas genera showed above 92 percent siderophore units (psu) during siderophores production and hydroxamate proved to be the most common functional group among the analyzed siderophores. Our results provided evidence that Lerma-Chapala Basin bacteria and their metallophores could potentially be employed in bioremediation processes or may even have potential for applications in other biotechnological fields.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Bacterias/genética , Biodegradación Ambiental , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
3.
Int J Syst Evol Microbiol ; 66(2): 707-711, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26611862

RESUMEN

A bacterial strain designated CAVIOT was isolated during the course of a study of culturable bacteria in a riverbank soil sample from Tlaxcala, Mexico. The strain was subjected to a polyphasic taxonomic characterization. Strain CAVIOT was aerobic, Gram-stain-negative, non-spore-forming and rod-shaped. Colonies grown on R2A agar at 28 °C were pale violet, mucoid, rounded, smooth and glossy. The strain was motile and catalase- and oxidase-positive, and maximum growth temperature was 35 °C. Strain CAVIOT was classified within the genus Massilia as its 16S rRNA gene sequence was closely related to those of Massilia umbonata LP01T (97.5 % similarity), Massilia dura 16T (97.2 %) and Massilia plicata 76T (97.1 %). The predominant respiratory quinone was Q8. The major fatty acids were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c/C18 : 1ω6c). The predominant polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and an unknown phospholipid. The DNA G+C content was 65.0 mol% (Tm). DNA-DNA hybridization results showed values below 25 % with respect to the type strains of the closest related species. Therefore, strain CAVIOT can be differentiated from previously described species of the genus Massilia and represents a novel species, for which the name Massilia violacea sp. nov. is proposed. The type strain is CAVIOT ( = CECT 8897T = LMG 28941T).


Asunto(s)
Oxalobacteraceae/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , México , Hibridación de Ácido Nucleico , Oxalobacteraceae/genética , Oxalobacteraceae/aislamiento & purificación , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA