Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
PLoS One ; 19(2): e0297280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38346057

RESUMEN

Bartonellosis refers to disease caused by the Bartonella genus of bacteria. The breadth of disease manifestations associated with Bartonella is currently expanding and includes regional lymphadenopathy, rheumatic, ocular, and neurological disorders. The dearth of knowledge regarding diagnosis, treatment and pathogenesis of this disease can be partially attributed to the lack of a reliable small animal model for the disease. For this study, Bartonella henselae, the most common species associated with human disease, was injected into Swiss Webster (SW) mice. When the outcome indicated that productive infection did not occur, SCID/Beige (immune compromised) mice were inoculated. While SW mice may potentially harbor an acute infection, less than 10 days in length, the SCID/Beige model provided a sustained infection lasting up to 30-days. These data indicate that SCID/Beige mice can provide a model to study Bartonella infection, therapeutics, and vector dynamics in the future.


Asunto(s)
Infecciones por Bartonella , Bartonella henselae , Bartonella , Enfermedad por Rasguño de Gato , Humanos , Ratones , Animales , Enfermedad por Rasguño de Gato/diagnóstico , Ratones SCID , Infecciones por Bartonella/diagnóstico , Infecciones por Bartonella/microbiología
2.
Methods Mol Biol ; 2742: 19-35, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165612

RESUMEN

Among the controversies in Lyme disease is the potential for Borrelia spirochetes to persist after guideline-directed antimicrobial therapy. Direct detection of the spirochetes has been essential to explore this phenomenon, given that the infection is often occult and infrequently observed in blood and other body fluids. In addition, the role of spirochetal infection has been examined in the etiology of neurodegenerative diseases through detection in affected tissues. In this chapter, we describe methodology to specifically identify Borrelia DNA, RNA, and intact organism (via protein) in tissue for studies of Lyme Borreliosis.


Asunto(s)
Borrelia , Enfermedad de Lyme , Humanos , Borrelia/genética , Enfermedad de Lyme/diagnóstico
3.
One Health ; 18: 100665, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38223332

RESUMEN

The diseases caused by the Bartonella genus of bacteria are clinically diverse, and can be challenging to cure. The study of bartonellosis has been hampered by the lack of a suitable animal model. Preclinical studies for novel therapeutics and a competent host for vector transmission studies are needed to fill critical knowledge gaps. The studies included here are a representation of in vivo Bartonella research and the corresponding challenges. This review examines the current state of available animal models by assessing the success of various model species and strains in Bartonella infection. With a focus on the strengths and weaknesses of current animal models, the importance of these models for improvement of human health and veterinary care is emphasized.

4.
Front Microbiol ; 14: 1293300, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075920

RESUMEN

Lyme disease (LD) results from the most prevalent tick-borne infection in North America, with over 476,000 estimated cases annually. The disease is caused by Borrelia burgdorferi (Bb) sensu lato which transmits through the bite of Ixodid ticks. Most cases treated soon after infection are resolved by a short course of oral antibiotics. However, 10-20% of patients experience chronic symptoms because of delayed or incomplete treatment, a condition called Post-Treatment Lyme Disease (PTLD). Some Bb persists in PTLD patients after the initial course of antibiotics and an effective treatment to eradicate the persistent Bb is needed. Other organisms that cause persistent infections, such as M. tuberculosis, are cleared using a combination of therapies rather than monotherapy. A group of Food and Drug Administration (FDA)-approved drugs previously shown to be efficacious against Bb in vitro were used in monotherapy or in combination in mice infected with Bb. Different methods of detection were used to assess the efficacy of the treatments in the infected mice including culture, xenodiagnosis, and molecular techniques. None of the monotherapies eradicated persistent Bb. However, 4 dual combinations (doxycycline + ceftriaxone, dapsone + rifampicin, dapsone + clofazimine, doxycycline + cefotaxime) and 3 triple combinations (doxycycline + ceftriaxone+ carbomycin, doxycycline + cefotaxime+ loratadine, dapsone+ rifampicin+ clofazimine) eradicated persistent Bb infections. These results suggest that combination therapy should be investigated in preclinical studies for treating human Lyme disease.

5.
Front Med (Lausanne) ; 10: 1183344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293310

RESUMEN

Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.

6.
Pathogens ; 12(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36678479

RESUMEN

The blacklegged tick, Ixodes scapularis, is the predominant vector of Borrelia burgdorferi, the agent of Lyme disease in the USA. Natural hosts of I. scapularis such as Peromyscus leucopus are repeatedly infested by these ticks without acquiring tick resistance. However, upon repeated tick infestations, non-natural hosts such as guinea pigs, mount a robust immune response against critical tick salivary antigens and acquire tick resistance able to thwart tick feeding and Borrelia burgdorferi transmission. The salivary targets of acquired tick resistance could serve as vaccine targets to prevent tick feeding and the tick transmission of human pathogens. Currently, there is no animal model able to demonstrate both tick resistance and diverse clinical manifestations of Lyme disease. Non-human primates serve as robust models of human Lyme disease. By evaluating the responses to repeated tick infestation, this animal model could accelerate our ability to define the tick salivary targets of acquired resistance that may serve as vaccines to prevent the tick transmission of human pathogens. Towards this goal, we assessed the development of acquired tick resistance in non-human primates upon repeated tick infestations. We report that following repeated tick infestations, non-human primates do not develop the hallmarks of acquired tick resistance observed in guinea pigs. However, repeated tick infestations elicit immune responses able to impair the tick transmission of B. burgdorferi. A mechanistic understanding of the protective immune responses will provide insights into B. burgdorferi-tick-host interactions and additionally contribute to anti-tick vaccine discovery.

8.
Pathogens ; 11(5)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35631051

RESUMEN

Uptake of the Lyme disease spirochete by its tick vector requires not only chemical signals present in the tick's saliva but a responsive phenotype by the Borrelia burgdorferi living in the mammalian host. This is the principle behind xenodiagnosis, wherein pathogen is detected by vector acquisition. To study migration of B. burgdorferi toward Ixodes scapularis tick saliva, with the goal of identifying chemoattractant molecules, we tested multiple assays and compared migration of host-adapted spirochetes to those cultured in vitro. We tested mammalian host-adapted spirochetes, along with those grown in culture at 34 °C, for their relative attraction to tick saliva or the nutrient N-acetyl-D-glucosamine (D-GlcNAc) and its dimer chitobiose using two different experimental designs. The host-adapted B. burgdorferi showed greater preference for tick saliva over the nutrients, whereas the cultured incubator-grown B. burgdorferi displayed no significant attraction to saliva versus a significant response to the nutrients. Our results not only describe a validated migration assay for studies of the Lyme disease agent, but provide a further understanding of how growth conditions and phenotype of B. burgdorferi are related to vector acquisition.

9.
Microbiol Spectr ; 10(3): e0172221, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35579456

RESUMEN

Tick-borne relapsing fever (TBRF) is a neglected vector-borne bacterial disease distributed worldwide. Borrelia turicatae, Borrelia parkeri, and Borrelia hermsii are three argasid-borne TBRF species previously implicated in human disease in North America. TBRF is likely underdiagnosed due to its nonspecific symptoms and poorly developed diagnostic tests. Studies suggest that the Borrelia immunogenic protein A (BipA) is specific to TBRF Borrelia but heterogenic between species. In this study, we hypothesized that antibody responses generated to BipA are specific to the North American TBRF species infecting a given animal. To test this, we characterized the expression and localization of native BipA in North American species of TBRF Borrelia. We also infected mice by needle inoculation or tick bite with B. turicatae, B. hermsii, or B. parkeri and evaluated serum sample reactivity to recombinant BipA (rBipA) that was produced from each species. Furthermore, serum samples from nonhuman primates and domestic dogs experimentally infected with B. turicatae were assessed. Lastly, we tested human Lyme disease (LD) serum samples to determine potential cross-reactivity to rBipA generated from B. turicatae, B. parkeri, and B. hermsii. Our findings indicate that rBipA has the potential to distinguish between infections of LD- and TBRF-causing spirochetes and that antibody responses were more robust toward the Borrelia species causing infection. This work further supports that rBipA can likely distinguish between B. turicatae, B. hermsii, and B. parkeri infections in mice, canines, and nonhuman primates. IMPORTANCEBorrelia species transmitted by soft or hard ticks cause tick-borne relapsing fever (TBRF). This is a debilitating disease distributed worldwide but is likely underdiagnosed or misdiagnosed as Lyme disease due to poorly developed diagnostic tests. Borrelia turicatae, Borrelia parkeri, and Borrelia hermsii are three TBRF species previously implicated in human disease in North America. Commonly used diagnostic methods do not identify the species causing infection. In this study, we evaluated the potential of recombinant Borrelia immunogenic protein A (rBipA) as a diagnostic antigen capable of distinguishing between infections of TBRF Borrelia species. We show that serum from mice, canines, and nonhuman primates infected with B. turicatae, B. parkeri, or B. hermsii react more strongly to the rBipA from the species causing infection. Furthermore, sera from Lyme disease patients failed to cross-react with our rBipA proteins, indicating the potential to use rBipA as a species-specific diagnostic antigen for TBRF.


Asunto(s)
Borrelia , Enfermedad de Lyme , Fiebre Recurrente , Animales , Formación de Anticuerpos , Perros , Enfermedad de Lyme/diagnóstico , Ratones , América del Norte , Fiebre Recurrente/diagnóstico , Fiebre Recurrente/microbiología , Fiebre Recurrente/veterinaria , Proteína Estafilocócica A
10.
mBio ; 13(3): e0344021, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35467428

RESUMEN

The annual incidence of Lyme disease, caused by tick-transmitted Borreliella burgdorferi, is estimated to be at least 476,000 cases in the United States and many more worldwide. Ten to 20% of antimicrobial-treated Lyme disease patients display posttreatment Lyme disease syndrome (PTLDS), a clinical complication whose etiology and pathogenesis remain uncertain. Autoimmunity, cross-reactivity, molecular mimicry, coinfections, and borrelial tolerance to antimicrobials/persistence have been hypothesized and studied as potential causes of PTLDS. Studies of borrelial tolerance/persistence in vitro in response to antimicrobials and experimental studies in mice and nonhuman primates, taken together with clinical reports, have revealed that B. burgdorferi becomes tolerant to antimicrobials and may sometimes persist in animals and humans after the currently recommended antimicrobial treatment. Moreover, B. burgdorferi is pleomorphic and can generate viable-but-nonculturable bacteria, states also involved in antimicrobial tolerance. The multiple regulatory pathways and structural genes involved in mediating this tolerance to antimicrobials and environmental stressors by persistence might include the stringent (rel and dksA) and host adaptation (rpoS) responses, sugar metabolism (glpD), and polypeptide transporters (opp). Application of this recently reported knowledge to clinical studies can be expected to clarify the potential role of bacterial antibacterial tolerance/persistence in Lyme disease and PTLDS.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Síndrome de la Enfermedad Post-Lyme , Garrapatas , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Borrelia burgdorferi/fisiología , Enfermedad de Lyme/microbiología
11.
Front Med (Lausanne) ; 8: 666554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485323

RESUMEN

Lyme disease (also known as Lyme borreliosis) is the most common vector-borne disease in the United States with an estimated 476,000 cases per year. While historically, the long-term impact of Lyme disease on patients has been controversial, mounting evidence supports the idea that a substantial number of patients experience persistent symptoms following treatment. The research community has largely lacked the necessary funding to properly advance the scientific and clinical understanding of the disease, or to develop and evaluate innovative approaches for prevention, diagnosis, and treatment. Given the many outstanding questions raised into the diagnosis, clinical presentation and treatment of Lyme disease, and the underlying molecular mechanisms that trigger persistent disease, there is an urgent need for more support. This review article summarizes progress over the past 5 years in our understanding of Lyme and tick-borne diseases in the United States and highlights remaining challenges.

12.
Am J Primatol ; 83(12): e23331, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34541703

RESUMEN

Nonhuman primates (NHPs) are a critical component of translational/preclinical biomedical research due to the strong similarities between NHP and human physiology and disease pathology. In some cases, NHPs represent the most appropriate, or even the only, animal model for complex metabolic, neurological, and infectious diseases. The increased demand for and limited availability of these valuable research subjects requires that rigor and reproducibility be a prime consideration to ensure the maximal utility of this scarce resource. Here, we discuss a number of approaches that collectively can contribute to enhanced rigor and reproducibility in NHP research.


Asunto(s)
Investigación Biomédica , Primates , Animales , Modelos Animales de Enfermedad , Reproducibilidad de los Resultados
13.
Pathogens ; 10(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201011

RESUMEN

Bartonellosis is caused by a Gram-negative intracellular bacterium with a zoonotic transmission. The disease, caused by any of several genospecies of Bartonella can range from a benign, self-limited condition to a highly morbid and life-threatening illness. The current standard of care antibiotics are generally effective in acute infection; these include azithromycin or erythromycin, doxycycline, gentamicin, rifampin, and ciprofloxacin. However, treatment of chronic infection remains problematic. We tested six different antibiotics for their ability to stop the growth of Bartonella sp. in the standard insect media and in an enrichment media. All antibiotics (ceftriaxone, doxycycline, gentamycin, azithromycin, ampicillin, and azlocillin) had minimum inhibitory concentrations (MICs) below 0.5 µg/mL in the BAPGM enrichment media but were ineffective at inhibiting growth when the standard insect media was used. Azlocillin was the most potent, with a MIC of 0.01 µg/mL. When Bartonella was tested under intracellular growth conditions, none of the antibiotics were efficacious singly. However, growth inhibition was observed when azlocillin and azithromycin were combined. These studies illustrate the impact of growth medium and intracellular environment on antibiotic susceptibility testing and indicate that azlocillin combined with azithromycin may be an effective drug combination for the treatment of Bartonellosis.

14.
Front Med (Lausanne) ; 8: 643235, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34164410

RESUMEN

An understanding of the pathogenesis and pathophysiology of Lyme disease is key to the ultimate care of patients with Lyme disease. To better understand the various mechanisms underlying the infection caused by Borrelia burgdorferi, the Pathogenesis and Pathophysiology of Lyme Disease Subcommittee was formed to review what is currently known about the pathogenesis and pathophysiology of Lyme disease, from its inception, but also especially about its ability to persist in the host. To that end, the authors of this report were assembled to update our knowledge about the infectious process, identify the gaps that exist in our understanding of the process, and provide recommendations as to how to best approach solutions that could lead to a better means to manage patients with persistent Lyme disease.

15.
Front Neurol ; 12: 628045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040573

RESUMEN

The complex etiology of neurodegenerative disease has prompted studies on multiple mechanisms including genetic predisposition, brain biochemistry, immunological responses, and microbial insult. In particular, Lyme disease is often associated with neurocognitive impairment with variable manifestations between patients. We sought to develop methods to reliably detect Borrelia burgdorferi, the spirochete bacteria responsible for Lyme disease, in autopsy specimens of patients with a history of neurocognitive disease. In this report, we describe the use of multiple molecular detection techniques for this pathogen and its application to a case study of a Lyme disease patient. The patient had a history of Lyme disease, was treated with antibiotics, and years later developed chronic symptoms including dementia. The patient's pathology and clinical case description was consistent with Lewy body dementia. B. burgdorferi was identified by PCR in several CNS tissues and by immunofluorescent staining in the spinal cord. These studies offer proof of the principle that persistent infection with the Lyme disease spirochete may have lingering consequences on the CNS.

16.
J Clin Invest ; 131(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33914704

RESUMEN

Disrupting transmission of Borrelia burgdorferi sensu lato complex (B. burgdorferi) from infected ticks to humans is one strategy to prevent the significant morbidity from Lyme disease. We have previously shown that an anti-OspA human mAb, 2217, prevents transmission of B. burgdorferi from infected ticks in animal models. Maintenance of a protective plasma concentration of a human mAb for tick season presents a significant challenge for a preexposure prophylaxis strategy. Here, we describe the optimization of mAb 2217 by amino acid substitutions (2217LS: M428L and N434S) in the Fc domain. The LS mutation led to a 2-fold increase in half-life in cynomolgus monkeys. In a rhesus macaque model, 2217LS protected animals from tick transmission of spirochetes at a dose of 3 mg/kg. Crystallographic analysis of Fab in complex with OspA revealed that 2217 bound an epitope that was highly conserved among the B. burgdorferi, B. garinii, and B. afzelii species. Unlike most vaccines that may require boosters to achieve protection, our work supports the development of 2217LS as an effective preexposure prophylaxis in Lyme-endemic regions, with a single dose at the beginning of tick season offering immediate protection that remains for the duration of exposure risk.


Asunto(s)
Anticuerpos Antibacterianos , Anticuerpos Monoclonales/farmacología , Borrelia burgdorferi , Enfermedad de Lyme , Sustitución de Aminoácidos , Animales , Anticuerpos Antibacterianos/genética , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/farmacología , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Modelos Animales de Enfermedad , Humanos , Lipoproteínas/genética , Lipoproteínas/inmunología , Enfermedad de Lyme/tratamiento farmacológico , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/transmisión , Macaca fascicularis , Macaca mulatta , Masculino , Ratones , Ratones Transgénicos , Mutación Missense , Garrapatas/inmunología , Garrapatas/microbiología
17.
J Clin Microbiol ; 59(7): e0231320, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33910962

RESUMEN

In vivo diagnostic imaging of bacterial infections is currently reliant on targeting their metabolic pathways, an ineffective method to identify microbial species with low metabolic activity. Here, we establish HS-198 as a small-molecule fluorescent conjugate that selectively targets the highly conserved bacterial protein HtpG (high-temperature protein G), within Borrelia burgdorferi, the bacterium responsible for Lyme disease. We describe the use of HS-198 to target morphologic forms of B. burgdorferi in both the logarithmic growth phase and the metabolically dormant stationary phase as well as in inactivated spirochetes. Furthermore, in a murine infection model, systemically injected HS-198 identified B. burgdorferi as revealed by imaging in postnecropsy tissue sections. These findings demonstrate how small-molecule probes directed at conserved bacterial protein targets can function to identify the microbe using noninvasive imaging and potentially as scaffolds to deliver antimicrobial agents to the pathogen.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Animales , Proteínas Bacterianas/genética , Diagnóstico por Imagen , Humanos , Enfermedad de Lyme/diagnóstico , Ratones
18.
Parasite Immunol ; 42(12): e12764, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32516446

RESUMEN

AIMS: To investigate the immunoglobulin (Ig) G response after being fed upon by Cimex lectularius L. METHODS AND RESULTS: Participants were fed upon by three male C lectularius insects weekly for a month. Blood was obtained before the feeding and at the last feeding, which was used for immunoblots against bed bug salivary gland extract, with antihuman Immunoglobulin G (IgG) secondary antibodies. No consistent IgG changes developed in 11 humans serially fed upon by C lectularius. Two participants had new IgG responses to proteins at molecular weights of approximately 12-13 kDa, and one had an IgG response to a protein at approximately 40 kDa. At the last study visit, more intense IgG bands to proteins at molecular weights of 12-13 kDa had developed in 55% of participants (6/11) and at molecular weights of ≈30, ≈40 and ≈70 kDa in 45% (5/11) compared with the first study visit. Nitrophorin and apyrase were the most common C lectularius proteins identified with liquid chromatography-tandem mass spectrometry in both crushed bed bug salivary gland extract and post-bed bug feeding extract. CONCLUSIONS: Human participants did not have consistent IgG responses to crushed C lectularius salivary gland extract.


Asunto(s)
Chinches/inmunología , Inmunoglobulina G/inmunología , Mordeduras y Picaduras de Insectos/inmunología , Saliva/inmunología , Adolescente , Adulto , Animales , Femenino , Humanos , Inmunoglobulina G/sangre , Mordeduras y Picaduras de Insectos/sangre , Masculino , Persona de Mediana Edad , Saliva/química , Glándulas Salivales/química , Proteínas y Péptidos Salivales/análisis , Proteínas y Péptidos Salivales/inmunología , Adulto Joven
19.
Artículo en Inglés | MEDLINE | ID: mdl-31245298

RESUMEN

The identification of microbial biomarkers is critical for the diagnosis of a disease early during infection. However, the identification of reliable biomarkers is often hampered by a low concentration of microbes or biomarkers within host fluids or tissues. We have outlined a multi-platform strategy to assess microbial biomarkers that can be consistently detected in host samples, using Borrelia burgdorferi, the causative agent of Lyme disease, as an example. Key aspects of the strategy include the selection of a macaque model of human disease, in vivo Microbial Antigen Discovery (InMAD), and proteomic methods that include microbial biomarker enrichment within samples to identify secreted proteins circulating during infection. Using the described strategy, we have identified 6 biomarkers from multiple samples. In addition, the temporal antibody response to select bacterial antigens was mapped. By integrating biomarkers identified from early infection with temporal patterns of expression, the described platform allows for the data driven selection of diagnostic targets.


Asunto(s)
Biomarcadores , Borrelia burgdorferi/aislamiento & purificación , Enfermedad de Lyme/diagnóstico , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Técnicas Bacteriológicas , Biomarcadores/sangre , Biomarcadores/orina , Borrelia burgdorferi/inmunología , Diagnóstico Precoz , Humanos , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Macaca mulatta , Proteómica , Suero/química , Orina/química
20.
Front Microbiol ; 10: 690, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057493

RESUMEN

Recent studies have shown that Borrelia burgdorferi can form antibiotic-tolerant persisters in the presence of microbiostatic drugs such as doxycycline. Precisely how this occurs is yet unknown. Our goal was to examine gene transcription by B. burgdorferi following doxycycline treatment in an effort to identify both persister-associated genes and possible targets for antimicrobial intervention. To do so, we performed next-generation RNA sequencing on doxycycline-treated spirochetes and treated spirochetes following regrowth, comparing them to untreated B. burgdorferi. A number of genes were perturbed and most of those which were statistically significant were down-regulated in the treated versus the untreated or treated/re-grown. Genes upregulated in the treated B. burgdorferi included a number of Erp genes and rplU, a 50S ribosomal protein. Among those genes associated with post-treatment regrowth were bba74 (Oms28), bba03, several peptide ABC transporters, ospA, ospB, ospC, dbpA and bba62. Studies are underway to determine if these same genes are perturbed in B. burgdorferi treated with doxycycline in a host environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...