Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(2011): 20231932, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018114

RESUMEN

Sirenians are a well-known example of morphological adaptation to a shallow-water grazing diet characterized by a modified feeding apparatus and orofacial morphology. Such adaptations were accompanied by an anterior tooth reduction associated with the development of keratinized pads, the evolution of which remains elusive. Among sirenians, the recently extinct Steller's sea cow represents a special case for being completely toothless. Here, we used µ-CT scans of sirenian crania to understand how motor-sensor systems associated with tooth innervation responded to innovations such as keratinized pads and continuous dental replacement. In addition, we surveyed nine genes associated with dental reduction for signatures of loss of function. Our results reveal how patterns of innervation changed with modifications of the dental formula, especially continuous replacement in manatees. Both our morphological and genomic data show that dental development was not completely lost in the edentulous Steller's sea cows. By tracing the phylogenetic history of tooth innervation, we illustrate the role of development in promoting the innervation of keratinized pads, similar to the secondary use of dental canals for innervating neomorphic keratinized structures in other tetrapod groups.


Asunto(s)
Pérdida de Diente , Diente , Animales , Femenino , Bovinos , Filogenia , Queratinas , Citoesqueleto
2.
Genes (Basel) ; 14(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38002961

RESUMEN

Golden moles (Chrysochloridae) and marsupial moles (Notoryctidae) are textbook examples of convergent evolution. Both taxa are highly adapted to subterranean lifestyles and have powerful limbs for digging through the soil/sand, ears that are adapted for low-frequency hearing, vestigial eyes that are covered by skin and fur, and the absence of optic nerve connections between the eyes and the brain. The eyes of marsupial moles also lack a lens as well as retinal rods and cones. Two hypotheses have been proposed to account for the greater degeneracy of the eyes of marsupial moles than golden moles. First, marsupial moles may have had more time to adapt to their underground habitat than other moles. Second, the eyes of marsupial moles may have been rapidly and recently vestigialized to (1) reduce the injurious effects of sand getting into the eyes and (2) accommodate the enlargement of lacrimal glands that keep the nasal cavity moist and prevent the entry of sand into the nasal passages during burrowing. Here, we employ molecular evolutionary methods on DNA sequences for 38 eye genes, most of which are eye-specific, to investigate the timing of relaxed selection (=neutral evolution) for different groups of eye-specific genes that serve as proxies for distinct functional components of the eye (rod phototransduction, cone phototransduction, lens/cornea). Our taxon sampling included 12 afrothere species, of which two are golden moles (Amblysomus hottentotus, Chrysochloris asiatica), and 28 marsupial species including two individuals of the southern marsupial mole (Notoryctes typhlops). Most of the sequences were mined from databases, but we also provide new genome data for A. hottentotus and one of the two N. typhlops individuals. Even though the eyes of golden moles are less degenerate than the eyes of marsupial moles, there are more inactivating mutations (e.g., frameshift indels, premature stop codons) in their cone phototransduction and lens/cornea genes than in orthologous genes of the marsupial mole. We estimate that cone phototransduction recovery genes were inactivated first in each group, followed by lens/cornea genes and then cone phototransduction activation genes. All three groups of genes were inactivated earlier in golden moles than in marsupial moles. For the latter, we estimate that lens/cornea genes were inactivated ~17.8 million years ago (MYA) when stem notoryctids were burrowing in the soft soils of Australian rainforests. Selection on phototransduction activation genes was relaxed much later (5.38 MYA), during the early stages of Australia's aridification that produced coastal sand plains and eventually sand dunes. Unlike cone phototransduction activation genes, rod phototransduction activation genes are intact in both golden moles and one of the two individuals of N. typhlops. A second marsupial mole individual has just a single inactivating mutation in one of the rod phototransduction activation genes (PDE6B). One explanation for this result is that some rod phototransduction activation genes are pleiotropic and are expressed in extraocular tissues, possibly in conjunction with sperm thermotaxis.


Asunto(s)
Marsupiales , Topos , Animales , Masculino , Afrotheria , Australia , Marsupiales/genética , Topos/genética , Filogenia , Arena , Semen
3.
Eur J Hum Genet ; 31(6): 629-637, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36797467

RESUMEN

Neuromuscular disorders encompass a broad range of phenotypes and genetic causes. We investigated a consanguineous family in which multiple patients had a neuromuscular disorder characterized by a waddling gait, limb deformities, muscular weakness and facial palsy. Exome sequencing was completed on the DNA of three of the four patients. We identified a novel missense variant in DCAF13, ENST00000612750.5, NM_015420.7, c.907 G > A;p.(Asp303Asn), ENST00000616836.4, NM_015420.6, c.1363 G > A:p.(Asp455Asn) (rs1209794872) segregating with this phenotype; being homozygous in all four affected patients and heterozygous in the unaffected individuals. The variant was extremely rare in the public databases (gnomAD allele frequency 0.000007081); was absent from the DNA of 300 ethnically matched controls and affected an amino acid which has been conserved across 1-2 billion years of evolution in eukaryotes. DCAF13 contains three WD40 domains and is hypothesized to have roles in both rRNA processing and in ubiquitination of proteins. Analysis of DCAF13 with the p.(Asp455Asn) variant predicted that the amino acid change is deleterious and affects a ß-hairpin turn, within a WD40 domain of the protein which may decrease protein stability. Previously, a heterozygous variant of DCAF13 NM_015420.6, c.20 G > C:p.(Trp7Ser) with or without a heterozygous missense variant in CCN3, was suggested to cause inherited cortical myoclonic tremor with epilepsy. In addition, a heterozygous DCAF13 variant has been associated with autism spectrum disorder. Our study indicates a potential role of biallelic DCAF13 variants in neuromuscular disorders. Screening of additional patients with similar phenotype may broaden the allelic and phenotypic spectrum due to DCAF13 variants.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Humanos , Homocigoto , Epilepsia/genética , Frecuencia de los Genes , Mutación Missense , Fenotipo , Linaje , Proteínas de Unión al ARN/genética
4.
Nat Commun ; 13(1): 3912, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853876

RESUMEN

Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth.


Asunto(s)
Spheniscidae , Animales , Evolución Biológica , Fósiles , Genoma , Genómica , Filogenia , Spheniscidae/genética
5.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34897511

RESUMEN

Penguins (Sphenisciformes) are an iconic order of flightless, diving seabirds distributed across a large latitudinal range in the Southern Hemisphere. The extensive area over which penguins are endemic is likely to have fostered variation in pathogen pressure, which in turn will have imposed differential selective pressures on the penguin immune system. At the front line of pathogen detection and response, the Toll-like receptors (TLRs) provide insight into host evolution in the face of microbial challenge. TLRs respond to conserved pathogen-associated molecular patterns and are frequently found to be under positive selection, despite retaining specificity for defined agonist classes. We undertook a comparative immunogenetics analysis of TLRs for all penguin species and found evidence of adaptive evolution that was largely restricted to the cell surface-expressed TLRs, with evidence of positive selection at, or near, key agonist-binding sites in TLR1B, TLR4, and TLR5. Intriguingly, TLR15, which is activated by fungal products, appeared to have been pseudogenized multiple times in the Eudyptes spp., but a full-length form was present as a rare haplotype at the population level. However, in vitro analysis revealed that even the full-length form of Eudyptes TLR15 was nonfunctional, indicating an ancestral cryptic pseudogenization prior to its eventual disruption multiple times in the Eudyptes lineage. This unusual pseudogenization event could provide an insight into immune adaptation to fungal pathogens such as Aspergillus, which is responsible for significant mortality in wild and captive bird populations.


Asunto(s)
Spheniscidae , Animales , Evolución Molecular , Selección Genética , Spheniscidae/genética , Receptores Toll-Like/genética
6.
Open Res Eur ; 1: 75, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35967080

RESUMEN

Background: The study of regressive evolution has yielded a wealth of examples where the underlying genes bear molecular signatures of trait degradation, such as pseudogenization or deletion. Typically, it appears that such disrupted genes are limited to the function of the regressed trait, whereas pleiotropic genes tend to be maintained by natural selection to support their myriad purposes. One such set of pleiotropic genes is involved in the synthesis ( AANAT, ASMT) and signaling ( MTNR1A, MTNR1B) of melatonin, a hormone secreted by the vertebrate pineal gland. Melatonin provides a signal of environmental darkness, thereby influencing the circadian and circannual rhythmicity of numerous physiological traits. Therefore, the complete loss of a pineal gland and the underlying melatonin pathway genes seems likely to be maladaptive, unless compensated by extrapineal sources of melatonin. Methods: We examined AANAT, ASMT, MTNR1A and MTNR1B in 123 vertebrate species, including pineal-less placental mammals and crocodylians. We searched for inactivating mutations and modelled selective pressures (dN/dS) to test whether the genes remain functionally intact. Results: We report that crocodylians retain intact melatonin genes and express AANAT and ASMT in their eyes, whereas all four genes have been repeatedly inactivated in the pineal-less xenarthrans, pangolins, sirenians, and whales. Furthermore, colugos have lost these genes, and several lineages of subterranean mammals have partial melatonin pathway dysfunction. These results are supported by the presence of shared inactivating mutations across clades and analyses of selection pressure based on the ratio of non-synonymous to synonymous substitutions (dN/dS), suggesting extended periods of relaxed selection on these genes. Conclusions: The losses of melatonin synthesis and signaling date to tens of millions of years ago in several lineages of placental mammals, raising questions about the evolutionary resilience of pleiotropic genes, and the causes and consequences of losing melatonin pathways in these species.

7.
Mol Phylogenet Evol ; 136: 104-118, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30980935

RESUMEN

Genes showing versatile functions or subjected to fast expansion and contraction during the adaptation of species to specific ecological conditions, like sensory receptors for odors, pheromones and tastes, are characterized by a great plasticity through evolution. One of the most fascinating sensory receptors in the family of TRP channels, the cold and menthol receptor TRPM8, has received significant attention in the literature. Recent studies have reported the existence of TRPM8 channel isoforms encoded by alternative mRNAs transcribed from alternative promoters and processed by alternative splicing. Since the first draft of the human genome was accomplished in 2000, alternative transcription, alternative splicing and alternative translation have appeared as major sources of gene product diversity and are thought to participate in the generation of complexity in higher organisms. In this study, we investigate whether alternative transcription has been a driving force in the evolution of the human forms of the cold receptor TRPM8. We identified 33 TRPM8 alternative mRNAs (24 new sequences) and their associated protein isoforms in human tissues. Using comparative genomics, we described the evolution of the human TRPM8 sequences in eight ancestors since the origin of Amniota, and estimated in which ancestors the new TRPM8 variants originated. In order to validate the estimated origins of this receptor, we performed experimental validations of predicted exons in mouse tissues. Our results suggest a first diversification event of the cold receptor in the Boreoeutheria ancestor, and a subsequent divergence at the origin of Simiiformes.


Asunto(s)
Frío , Evolución Molecular , Mentol/metabolismo , Canales Catiónicos TRPM/genética , Empalme Alternativo/genética , Animales , Línea Celular Tumoral , Exones/genética , Variación Genética , Células HEK293 , Humanos , Ratones , Sistemas de Lectura Abierta/genética , Filogenia , Isoformas de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canales Catiónicos TRPM/metabolismo
8.
Front Plant Sci ; 10: 43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30846991

RESUMEN

Ecologically and economically important fleshy edible fruits have evolved from dry fruit numerous times during angiosperm diversification. However, the molecular mechanisms that underlie these shifts are unknown. In the Solanaceae there has been a major shift to fleshy fruits in the subfamily Solanoideae. Evidence suggests that an ortholog of FRUITFULL (FUL), a transcription factor that regulates cell proliferation and limits the dehiscence zone in the silique of Arabidopsis, plays a similar role in dry-fruited Solanaceae. However, studies have shown that FUL orthologs have taken on new functions in fleshy fruit development, including regulating elements of tomato ripening such as pigment accumulation. FUL belongs to the core eudicot euFUL clade of the angiosperm AP1/FUL gene lineage. The euFUL genes fall into two paralogous clades, euFULI and euFULII. While most core eudicots have one gene in each clade, Solanaceae have two: FUL1 and FUL2 in the former, and MBP10 and MBP20 in the latter. We characterized the evolution of the euFUL genes to identify changes that might be correlated with the origin of fleshy fruit in Solanaceae. Our analyses revealed that the Solanaceae FUL1 and FUL2 clades probably originated through an early whole genome multiplication event. By contrast, the data suggest that the MBP10 and MBP20 clades are the result of a later tandem duplication event. MBP10 is expressed at weak to moderate levels, and its atypical short first intron lacks putative transcription factor binding sites, indicating possible pseudogenization. Consistent with this, our analyses show that MBP10 is evolving at a faster rate compared to MBP20. Our analyses found that Solanaceae euFUL gene duplications, evolutionary rates, and changes in protein residues and expression patterns are not correlated with the shift in fruit type. This suggests deeper analyses are needed to identify the mechanism underlying the change in FUL ortholog function.

10.
BMC Evol Biol ; 19(1): 31, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674270

RESUMEN

BACKGROUND: The gene for odontogenic ameloblast-associated (ODAM) is a member of the secretory calcium-binding phosphoprotein gene family. ODAM is primarily expressed in dental tissues including the enamel organ and the junctional epithelium, and may also have pleiotropic functions that are unrelated to teeth. Here, we leverage the power of natural selection to test competing hypotheses that ODAM is tooth-specific versus pleiotropic. Specifically, we compiled and screened complete protein-coding sequences, plus sequences for flanking intronic regions, for ODAM in 165 placental mammals to determine if this gene contains inactivating mutations in lineages that either lack teeth (baleen whales, pangolins, anteaters) or lack enamel on their teeth (aardvarks, sloths, armadillos), as would be expected if the only essential functions of ODAM are related to tooth development and the adhesion of the gingival junctional epithelium to the enamel tooth surface. RESULTS: We discovered inactivating mutations in all species of placental mammals that either lack teeth or lack enamel on their teeth. A surprising result is that ODAM is also inactivated in a few additional lineages including all toothed whales that were examined. We hypothesize that ODAM inactivation is related to the simplified outer enamel surface of toothed whales. An alternate hypothesis is that ODAM inactivation in toothed whales may be related to altered antimicrobial functions of the junctional epithelium in aquatic habitats. Selection analyses on ODAM sequences revealed that the composite dN/dS value for pseudogenic branches is close to 1.0 as expected for a neutrally evolving pseudogene. DN/dS values on transitional branches were used to estimate ODAM inactivation times. In the case of pangolins, ODAM was inactivated ~ 65 million years ago, which is older than the oldest pangolin fossil (Eomanis, 47 Ma) and suggests an even more ancient loss or simplification of teeth in this lineage. CONCLUSION: Our results validate the hypothesis that the only essential functions of ODAM that are maintained by natural selection are related to tooth development and/or the maintenance of a healthy junctional epithelium that attaches to the enamel surface of teeth.


Asunto(s)
Ameloblastos/metabolismo , Esmalte Dental/metabolismo , Euterios/genética , Silenciador del Gen , Odontogénesis , Proteínas/genética , Ballenas/genética , Animales , Secuencia de Bases , Teorema de Bayes , Codón/genética , Femenino , Fósiles , Funciones de Verosimilitud , Mutación/genética , Filogenia , Embarazo , Proteínas/metabolismo
11.
Eur J Med Genet ; 62(9): 103554, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30359775

RESUMEN

Acromesomelic dysplasia are a heterogeneous group of disorders with variable spectrum and severity of skeletal anomalies in the affected individuals. Acromesomelic dysplasia type Maroteaux (AMDM) is characterized by extreme shortening of the forelimbs and disproportionate short stature. Several homozygous inactivating mutations in NPR2 have been identified in different AMDM patients. We report five novel variants in affected individuals in four different families. These include two nonsense and three missense variants. This study broadens the genotypic spectrum of NPR2 mutations in individuals with AMDM and also describes the intra- and inter-familial phenotypic variability due to NPR2 variants.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Receptores del Factor Natriurético Atrial/genética , Adolescente , Adulto , Enfermedades del Desarrollo Óseo/patología , Niño , Femenino , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación
12.
Sci Adv ; 4(5): eaar6478, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29774238

RESUMEN

The end-Cretaceous extinction led to a massive faunal turnover, with placental mammals radiating in the wake of nonavian dinosaurs. Fossils indicate that Cretaceous stem placentals were generally insectivorous, whereas their earliest Cenozoic descendants occupied a variety of dietary niches. It is hypothesized that this dietary radiation resulted from the opening of niche space, following the extinction of dinosaurian carnivores and herbivores. We provide the first genomic evidence for the occurrence and timing of this dietary radiation in placental mammals. By comparing the genomes of 107 placental mammals, we robustly infer that chitinase genes (CHIAs), encoding enzymes capable of digesting insect exoskeletal chitin, were present as five functional copies in the ancestor of all placental mammals, and the number of functional CHIAs in the genomes of extant species positively correlates with the percentage of invertebrates in their diets. The diverse repertoire of CHIAs in early placental mammals corroborates fossil evidence of insectivory in Cretaceous eutherians, with descendant lineages repeatedly losing CHIAs beginning at the Cretaceous/Paleogene (K/Pg) boundary as they radiated into noninsectivorous niches. Furthermore, the timing of gene loss suggests that interordinal diversification of placental mammals in the Cretaceous predates the dietary radiation in the early Cenozoic, helping to reconcile a long-standing debate between molecular timetrees and the fossil record. Our results demonstrate that placental mammal genomes, including humans, retain a molecular record of the post-K/Pg placental adaptive radiation in the form of numerous chitinase pseudogenes.


Asunto(s)
Quitinasas/genética , Extinción Biológica , Fósiles , Genoma , Genómica , Mamíferos/clasificación , Mamíferos/genética , Placenta , Alimentación Animal , Animales , Evolución Biológica , Carnivoría , Femenino , Dosificación de Gen , Genómica/métodos , Herbivoria , Filogenia , Embarazo
13.
Integr Comp Biol ; 58(3): 441-451, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29697812

RESUMEN

Regressive evolution involves the degradation of formerly useful traits as organisms invade novel ecological niches. In animals, committing to a strict subterranean habit can lead to regression of the eyes, likely due to a limited exposure to light. Several lineages of subterranean mammals show evidence of such degeneration, which can include decreased organization of the retina, malformation of the lens, and subcutaneous positioning of the eye. Advances in DNA sequencing have revealed that this regression co-occurs with a degradation of genomic loci encoding visual functions, including protein-coding genes. Other dim light-adapted vertebrates with normal ocular anatomy, such as nocturnal and aquatic species, also demonstrate evidence of visual gene loss, but the absence of comparative studies has led to the untested assumption that subterranean mammals are special in the degree of this genomic regression. Additionally, previous studies have shown that not all vision genes have been lost in subterranean mammals, but it is unclear whether they are under relaxed selection and will ultimately be lost, are maintained due to pleiotropy or if natural selection is favoring the retention of the eye and certain critical underlying loci. Here I report that vision gene loss in subterranean mammals tends to be more extensive in quantity and differs in distribution from other dim light-adapted mammals, although some committed subterranean mammals demonstrate significant overlap with nocturnal microphthalmic species. In addition, blind subterranean mammals retain functional orthologs of non-pleiotropic visual genes that are evolving at rates consistent with purifying selection. Together, these results suggest that although living underground tends to lead to major losses of visual functions, natural selection is maintaining genes that support the eye, perhaps as an organ for circadian and/or circannual entrainment.


Asunto(s)
Evolución Molecular , Mamíferos/fisiología , Visión Ocular/genética , Animales , Ecosistema , Ojo/anatomía & histología , Mamíferos/genética , Ratas Topo/genética , Ratas Topo/fisiología , Topos/genética , Topos/fisiología
14.
Mol Phylogenet Evol ; 118: 47-53, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28943375

RESUMEN

Carotenoids have important roles in bird behavior, including pigmentation for sexual signaling and improving color vision via retinal oil droplets. Yellow carotenoids are diet-derived, but red carotenoids (ketocarotenoids) are typically synthesized from yellow precursors via a carotenoid ketolase. Recent research on passerines has provided evidence that a cytochrome p450 enzyme, CYP2J19, is responsible for this reaction, though it is unclear if this function is phylogenetically restricted. Here I provide evidence that CYP2J19 is the carotenoid ketolase common to Aves using the genomes of 65 birds and the retinal transcriptomes of 15 avian taxa. CYP2J19 is functionally intact and robustly transcribed in all taxa except for several species adapted to foraging in dim light conditions. Two penguins, an owl and a kiwi show evidence of genetic lesions and relaxed selection in their genomic copy of CYP2J19, and six owls show evidence of marked reduction in CYP2J19 retinal transcription compared to nine diurnal avian taxa. Furthermore, one of the owls appears to transcribe a CYP2J19 pseudogene. Notably, none of these taxa are known to use red carotenoids for sexual signaling and several species of owls and penguins represent the only birds known to completely lack red retinal oil droplets. The remaining avian taxa belong to groups known to possess red oil droplets, are known or expected to deposit red carotenoids in skin and/or plumage, and/or frequently forage in bright light. The loss and reduced expression of CYP2J19 is likely an adaptation to maximize retinal sensitivity, given that oil droplets reduce the amount of light available to the retina.


Asunto(s)
Aves/clasificación , Carotenoides/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Spheniscidae/clasificación , Estrigiformes/clasificación , Animales , Secuencia de Bases , Aves/genética , Sistema Enzimático del Citocromo P-450/clasificación , Bases de Datos Genéticas , Evolución Molecular , Filogenia , Retina/metabolismo , Spheniscidae/metabolismo , Estrigiformes/metabolismo
15.
Genome Biol Evol ; 9(10): 2522-2545, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992302

RESUMEN

We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end sequence data at 90× coverage using nine libraries with insert lengths ranging from ∼250 to 9,600 nt and read lengths from 100 to 375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.26 × 109 nt in length with an N50 length of 3.98 × 106 nt. We calculated the genome-wide fixation index (FST) of S. o. caurina with the closely related barred owl (Strix varia) as 0.819. We examined 19 genes that encode proteins with light-dependent functions in our genome assembly as well as in that of the barn owl (Tyto alba). We present genomic evidence for loss of three of these in S. o. caurina and four in T. alba. We suggest that most light-associated gene functions have been maintained in owls and their loss has not proceeded to the same extent as in other dim-light-adapted vertebrates.


Asunto(s)
Genoma , Estrigiformes/clasificación , Estrigiformes/genética , Animales , Aves/genética , Genoma Mitocondrial , Luz , Anotación de Secuencia Molecular , Visión Ocular
16.
J Med Genet ; 54(12): 787-794, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28814606

RESUMEN

Throughout Earth's history, evolution's numerous natural 'experiments' have resulted in a diverse range of phenotypes. Though de novo phenotypes receive widespread attention, degeneration of traits inherited from an ancestor is a very common, yet frequently neglected, evolutionary path. The latter phenomenon, known as regressive evolution, often results in vertebrates with phenotypes that mimic inherited disease states in humans. Regressive evolution of anatomical and/or physiological traits is typically accompanied by inactivating mutations underlying these traits, which frequently occur at loci identical to those implicated in human diseases. Here we discuss the potential utility of examining the genomes of vertebrates that have experienced regressive evolution to inform human medical genetics. This approach is low cost and high throughput, giving it the potential to rapidly improve knowledge of disease genetics. We discuss two well-described examples, rod monochromacy (congenital achromatopsia) and amelogenesis imperfecta, to demonstrate the utility of this approach, and then suggest methods to equip non-experts with the ability to corroborate candidate genes and uncover new disease loci.


Asunto(s)
Evolución Molecular , Sitios Genéticos , Predisposición Genética a la Enfermedad , Genoma , Genómica , Modelos Genéticos , Vertebrados/genética , Amelogénesis Imperfecta/diagnóstico , Amelogénesis Imperfecta/genética , Animales , Defectos de la Visión Cromática/diagnóstico , Defectos de la Visión Cromática/genética , Estudios de Asociación Genética , Genómica/métodos , Humanos , Mutación , Fenotipo , Seudogenes
17.
Mol Phylogenet Evol ; 115: 40-49, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28739369

RESUMEN

Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes.


Asunto(s)
Genoma , Queratinas/genética , Opsinas/genética , Receptores Acoplados a Proteínas G/genética , Serpientes/clasificación , Animales , Evolución Biológica , Evolución Molecular , Pezuñas y Garras/metabolismo , Queratinas/clasificación , Queratinas/metabolismo , Opsinas/clasificación , Filogenia , Receptores Acoplados a Proteínas G/clasificación , Serpientes/genética
18.
Mol Biol Evol ; 34(3): 666-676, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27940498

RESUMEN

Vertebrate color vision has evolved partly through the modification of five ancestral visual opsin proteins via gene duplication, loss, and shifts in spectral sensitivity. While many vertebrates, particularly mammals, birds, and fishes, have had their visual opsin repertoires studied in great detail, testudines (turtles) and crocodylians have largely been neglected. Here I examine the genomic basis for color vision in four species of turtles and four species of crocodylians, and demonstrate that while turtles appear to vary in their number of visual opsins, crocodylians experienced a reduction in their color discrimination capacity after their divergence from Aves. Based on the opsin sequences present in their genomes and previous measurements of crocodylian cones, I provide evidence that crocodylians have co-opted the rod opsin (RH1) for cone function. This suggests that some crocodylians might have reinvented trichromatic color vision in a novel way, analogous to several primate lineages. The loss of visual opsins in crocodylians paralleled the loss of various anatomical features associated with photoreception, attributed to a "nocturnal bottleneck" similar to that hypothesized for Mesozoic mammals. I further queried crocodylian genomes for nonvisual opsins and genes associated with protection from ultraviolet light, and found evidence for gene inactivation or loss for several of these genes. Two genes, encoding parietopsin and parapinopsin, were additionally inactivated in birds and turtles, likely co-occurring with the loss of the parietal eye in these lineages.


Asunto(s)
Caimanes y Cocodrilos/fisiología , Opsinas de Bastones/genética , Tortugas/fisiología , Caimanes y Cocodrilos/genética , Animales , Evolución Biológica , Visión de Colores , Evolución Molecular , Duplicación de Gen , Genómica , Opsinas/genética , Opsinas/metabolismo , Filogenia , Reptiles/genética , Opsinas de Bastones/metabolismo , Tortugas/genética , Vertebrados/genética , Vertebrados/fisiología
19.
Mol Phylogenet Evol ; 106: 86-102, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27659724

RESUMEN

The explosive, long fuse, and short fuse models represent competing hypotheses for the timing of placental mammal diversification. Support for the explosive model, which posits both interordinal and intraordinal diversification after the KPg mass extinction, derives from morphological cladistic studies that place Cretaceous eutherians outside of crown Placentalia. By contrast, most molecular studies favor the long fuse model wherein interordinal cladogenesis occurred in the Cretaceous followed by intraordinal cladogenesis after the KPg boundary. Phillips (2016) proposed a soft explosive model that allows for the emergence of a few lineages (Xenarthra, Afrotheria, Euarchontoglires, Laurasiatheria) in the Cretaceous, but otherwise agrees with the explosive model in positing the majority of interordinal diversification after the KPg mass extinction. Phillips (2016) argues that rate transference errors associated with large body size and long lifespan have inflated previous estimates of interordinal divergence times, and further suggests that most interordinal divergences are positioned after the KPg boundary when rate transference errors are avoided through the elimination of calibrations in large-bodied and/or long lifespan clades. Here, we show that rate transference errors can also occur in the opposite direction and drag forward estimated divergence dates when calibrations in large-bodied/long lifespan clades are omitted. This dragging forward effect results in the occurrence of more than half a billion years of 'zombie lineages' on Phillips' preferred timetree. By contrast with ghost lineages, which are a logical byproduct of an incomplete fossil record, zombie lineages occur when estimated divergence dates are younger than the minimum age of the oldest crown fossils. We also present the results of new timetree analyses that address the rate transference problem highlighted by Phillips (2016) by deleting taxa that exceed thresholds for body size and lifespan. These analyses recover all interordinal divergence times in the Cretaceous and are consistent with the long fuse model of placental diversification. Finally, we outline potential problems with morphological cladistic analyses of higher-level relationships among placental mammals that may account for the perceived discrepancies between molecular and paleontological estimates of placental divergence times.


Asunto(s)
Mamíferos/clasificación , Modelos Teóricos , Animales , Biodiversidad , Tamaño Corporal , Femenino , Fósiles , Longevidad , Mamíferos/fisiología , Paleontología , Filogenia , Placenta , Embarazo
20.
Proc Biol Sci ; 282(1819)2015 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-26582021

RESUMEN

Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage.


Asunto(s)
Evolución Biológica , Ojo/anatomía & histología , Luz , Longevidad , Mamíferos/anatomía & histología , Mamíferos/fisiología , Opsinas de Bastones/genética , Animales , Evolución Molecular , Mamíferos/genética , Datos de Secuencia Molecular , Filogenia , Opsinas de Bastones/metabolismo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...