Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 13(1): 6991, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385003

RESUMEN

Modification of soil food webs by land management may alter the response of ecosystem processes to climate extremes, but empirical support is limited and the mechanisms involved remain unclear. Here we quantify how grassland management modifies the transfer of recent photosynthates and soil nitrogen through plants and soil food webs during a post-drought period in a controlled field experiment, using in situ 13C and 15N pulse-labelling in intensively and extensively managed fields. We show that intensive management decrease plant carbon (C) capture and its transfer through components of food webs and soil respiration compared to extensive management. We observe a legacy effect of drought on C transfer pathways mainly in intensively managed grasslands, by increasing plant C assimilation and 13C released as soil CO2 efflux but decreasing its transfer to roots, bacteria and Collembola. Our work provides insight into the interactive effects of grassland management and drought on C transfer pathways, and highlights that capture and rapid transfer of photosynthates through multi-trophic networks are key for maintaining grassland resistance to drought.


Asunto(s)
Sequías , Pradera , Ecosistema , Suelo , Cadena Alimentaria , Plantas/metabolismo
3.
Ecol Evol ; 11(22): 16070-16081, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34824812

RESUMEN

Ecologists have long debated the properties that confer stability to complex, species-rich ecological networks. Species-level soil food webs are large and structured networks of central importance to ecosystem functioning. Here, we conducted an analysis of the stability properties of an up-to-date set of theoretical soil food web models that account both for realistic levels of species richness and the most recent views on the topological structure (who is connected to whom) of these food webs. The stability of the network was best explained by two factors: strong correlations between interaction strengths and the blocked, nonrandom trophic structure of the web. These two factors could stabilize our model food webs even at the high levels of species richness that are typically found in soil, and that would make random systems very unstable. Also, the stability of our soil food webs is well-approximated by the cascade model. This result suggests that stability could emerge from the hierarchical structure of the functional organization of the web. Our study shows that under the assumption of equilibrium and small perturbations, theoretical soil food webs possess a topological structure that allows them to be complex yet more locally stable than their random counterpart. In particular, results strongly support the general hypothesis that the stability of rich and complex soil food webs is mostly driven by correlations in interaction strength and the organization of the soil food web into functional groups. The implication is that in real-world food web, any force disrupting the functional structure and distribution pattern of interaction strengths (i.e., energy fluxes) of the soil food webs will destabilize the dynamics of the system, leading to species extinction and major changes in the relative abundances of species.

4.
Ecol Evol ; 11(10): 5049-5064, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025991

RESUMEN

The global amphibian crisis is driven by a range of stressors including disease, habitat loss, and environmental contamination. The role of climate change remains poorly studied and is likely to influence environmental suitability, ranges, reproduction, and phenology. This study aimed to characterize the bioclimatic-habitat niche space of the Natterjack toad (Epidalea calamita) throughout its European range and to assess the impact of climate on the toad's environmental suitability and breeding behavior in Ireland, where declines in recent decades have resulted in it being regionally Red-Listed as Endangered. To address these questions, we first identified which climate variables best predict the current bioclimatic niche, fecundity (number of eggs deposit), and phenology. We then used future climate projections for two time periods (2041-2060 and 2061-2080) and two greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5) to predict how the species range, fecundity, and phenology would change. The European range of the species was found to be limited by winter temperatures while its bioclimatic niche varied markedly throughout its range. Species distribution models suggested projected climate change will increase environmental suitability for the species throughout its range, including Ireland, but most notably in Scandinavia and the Baltic. Fecundity in Ireland was greatest during the cool temperatures of spring and after wet winters associated with ephemeral breeding pool availability. Warm, dry summers in the preceding year influenced fecundity the following spring indicative of carryover effects. Initiation of spawning was driven by spring temperatures, not rainfall. Projections suggested future climate change may increase fecundity in Ireland while spawning may commence earlier throughout the 21st century especially under a high greenhouse gas emission scenario (RCP 8.5). Despite recent range contraction and population declines due to habitat deterioration, the Natterjack toad, if subject to a suitable species conservation strategy, has the potential to be a climate change winner, notwithstanding unpredictable habitat and land-use change, sea-level rise inducing coastal erosion, changes in invertebrate prey abundance, and disease.

5.
Glob Chang Biol ; 27(13): 3166-3178, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33797829

RESUMEN

Ecological communities are increasingly exposed to multiple interacting stressors. For example, warming directly affects the physiology of organisms, eutrophication stimulates the base of the food web, and harvesting larger organisms for human consumption dampens top-down control. These stressors often combine in the natural environment with unpredictable results. Bacterial communities in coastal ecosystems underpin marine food webs and provide many important ecosystem services (e.g. nutrient cycling and carbon fixation). Yet, how microbial communities will respond to a changing climate remains uncertain. Thus, we used marine mesocosms to examine the impacts of warming, nutrient enrichment, and altered top-predator population size structure (common shore crab) on coastal microbial biofilm communities in a crossed experimental design. Warming increased bacterial α-diversity (18% increase in species richness and 67% increase in evenness), but this was countered by a decrease in α-diversity with nutrient enrichment (14% and 21% decrease for species richness and evenness, respectively). Thus, we show some effects of these stressors could cancel each other out under climate change scenarios. Warming and top-predator population size structure both affected bacterial biofilm community composition, with warming increasing the abundance of bacteria capable of increased mineralization of dissolved and particulate organic matter, such as Flavobacteriia, Sphingobacteriia, and Cytophagia. However, the community shifts observed with warming depended on top-predator population size structure, with Sphingobacteriia increasing with smaller crabs and Cytophagia increasing with larger crabs. These changes could alter the balance between mineralization and carbon sequestration in coastal ecosystems, leading to a positive feedback loop between warming and CO2 production. Our results highlight the potential for warming to disrupt microbial communities and biogeochemical cycling in coastal ecosystems, and the importance of studying these effects in combination with other environmental stressors.


Asunto(s)
Ecosistema , Microbiota , Bacterias , Biopelículas , Cambio Climático , Cadena Alimentaria , Humanos
6.
Integr Zool ; 16(2): 240-254, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33137231

RESUMEN

According to the International Union for Conservation of Nature Red List, 41% of the world's amphibian species are threatened with extinction, making them more threatened than any other vertebrate group nowadays. Given the global amphibian crisis, comprehensive understanding of demographics and population trends of declining and threatened species is essential for effective management and conservation strategies. Counting egg spawns is widely used to assess population abundance in pond breeding anurans. However, it is unknown how such counts translate into robust population size estimations. We monitored the breeding activity of the Natterjack toad (Epidalea calamita), combining egg string counts and individual photo-identification with Capture-Mark-Recapture population size and operational sex ratio estimation. Male Natterjack toads were identified by the pattern of natural markings with repeated ID of the same individual confirmed for 10% of the samples using genetic fingerprinting. We identified 647 unique individuals within a closed study population at Caherdaniel, Co Kerry. Population estimates derived from egg string counts estimated a breeding population of 368 females (95% CI 353-384) and Capture-Mark-Recapture estimated a breeding population of 1698 males (95% CI 1000-2397). The female:male sex ratio was conservatively estimated at 1:5 (95% CI 1:3-1:6) where 62% ± 6% of females were assumed to spawn. These substantially departed from any priori assumption of 1:1 which could have underestimated the breeding population by up to 72%. Where amphibian absolute population size estimation is necessary, methods should include empirical survey data on operational sex ratios and not rely on assumptions or those derived from the literature which may be highly population and/or context-dependent.


Asunto(s)
Bufonidae/fisiología , Densidad de Población , Razón de Masculinidad , Animales , Bufonidae/genética , Dermatoglifia del ADN , Especies en Peligro de Extinción , Femenino , Irlanda , Masculino , Oviposición , Óvulo , Fotograbar , Estanques , Reproducción
7.
PeerJ ; 8: e10411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312769

RESUMEN

Biological records are often the data of choice for training predictive species distribution models (SDMs), but spatial sampling bias is pervasive in biological records data at multiple spatial scales and is thought to impair the performance of SDMs. We simulated presences and absences of virtual species as well as the process of recording these species to evaluate the effect on species distribution model prediction performance of (1) spatial bias in training data, (2) sample size (the average number of observations per species), and (3) the choice of species distribution modelling method. Our approach is novel in quantifying and applying real-world spatial sampling biases to simulated data. Spatial bias in training data decreased species distribution model prediction performance, but sample size and the choice of modelling method were more important than spatial bias in determining the prediction performance of species distribution models.

8.
Remote Sens Ecol Conserv ; 6(3): 354-365, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33133633

RESUMEN

To fully understand ecosystem functioning under global change, we need to be able to measure the stability of ecosystem functioning at multiple spatial scales. Although a number of stability components have been established at small spatial scales, there has been little progress in scaling these measures up to the landscape. Remote sensing data holds huge potential for studying processes at landscape scales but requires quantitative measures that are comparable from experimental field data to satellite remote sensing. Here we present a methodology to extract four components of ecosystem functioning stability from satellite-derived time series of Enhanced Vegetation Index (EVI) data. The four stability components are as follows: variability, resistance, recovery time and recovery rate in ecosystem functioning. We apply our method to the island of Ireland to demonstrate the use of remotely sensed data to identify large disturbance events in productivity. Our method uses stability measures that have been established at the field-plot scale to quantify the stability of ecosystem functioning. This makes our method consistent with previous small-scale stability research, whilst dealing with the unique challenges of using remotely sensed data including noise. We encourage the use of remotely-sensed data in assessing the stability of ecosystems at a scale that is relevant to conservation and management practices.

9.
Nat Ecol Evol ; 4(12): 1594-1601, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046872

RESUMEN

Exploration of the relationship between species diversity and ecological stability has occupied a prominent place in ecological research for decades. Yet, a key component of this puzzle-the contributions of individual species to the overall stability of ecosystems-remains largely unknown. Here, we show that individual species simultaneously stabilize and destabilize ecosystems along different dimensions of stability, and also that their contributions to functional (biomass) and compositional stability are largely independent. By simulating experimentally the extinction of three consumer species (the limpet Patella, the periwinkle Littorina and the topshell Gibbula) from a coastal rocky shore, we found that the capacity to predict the combined contribution of species to stability from the sum of their individual contributions varied among stability dimensions. This implies that the nature of the diversity-stability relationship depends upon the dimension of stability under consideration, and may be additive, synergistic or antagonistic. We conclude that, although the profoundly multifaceted and context-dependent consequences of species loss pose a significant challenge, the predictability of cumulative species contributions to some dimensions of stability provide a way forward for ecologists trying to conserve ecosystems and manage their stability under global change.


Asunto(s)
Ecosistema , Gastrópodos , Animales , Biodiversidad , Biomasa
10.
Ecol Lett ; 22(11): 1870-1878, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31436021

RESUMEN

The rate that consumers encounter resources in space necessarily limits the strength of feeding interactions that shape ecosystems. To explore the link between encounters and feeding, we first compiled the largest available dataset of interactions in the marine benthos by extracting data from published studies and generating new data. These data indicate that the size-scaling of feeding interactions varies among consumer groups using different strategies (passive or active) to encounter different resource types (mobile or static), with filter feeders exhibiting the weakest feeding interactions. Next, we used these data to develop an agent-based model of resource biomass encounter rates, underpinned by consumer encounter strategy and resource biomass density. Our model demonstrates that passive strategies for encountering small, dispersed resources limits biomass encounter rates, necessarily limiting the strength of feeding interactions. Our model is based on generalisable assumptions, providing a framework to assess encounter-based drivers of consumption and coexistence across systems.


Asunto(s)
Ecosistema , Conducta Alimentaria , Biomasa
11.
Ecol Evol ; 9(14): 8320-8330, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31380092

RESUMEN

The role of niche partitioning in structuring species-rich soil animal communities has been debated for decades and generated the "enigma of soil animal diversity." More recently, resource-based niche partitioning has been hypothesized to play a very limited role in the assembly of soil animal communities. To test this hypothesis, we applied a novel combination of stable isotopes and null models of species co-occurrence to quantify the extent of resource niche partitioning on a diverse oribatid mite community sampled from mature oak woodland.We asked whether species aggregate or segregate spatially and how these patterns correlated with the abundance of estimated trophic guilds. We also estimated the effects of environmental variables on community structure.All measured environmental variables accounted for 12% of variance in community structure, including 8% of pure spatial structure unrelated to measured environmental factors and 2% of pure environmental variance unrelated to spatial variation. Co-occurrence analysis revealed 10 pairs of species that aggregated and six pairs of species that were spatially segregated. Values of δ15N indicated that five out of the 10 pairs of aggregated species occupied the same trophic guild, while values of δ13C indicated that species in these five pairs consumed resources of different quality, supporting a significant role of resource-based niche partitioning. Also, one of the five pairs of segregated species occupied the same trophic guild but had overlapping δ13C values suggesting that these species do not co-occur locally and thus minimize competition for shared resources.Partitioning of resources plays an underestimated role in soil microarthropod communities and different local communities consisted of the same trophic guilds with species identity changing from place to place. The sum of resource partitioning, multi-trophic interactions, and microscale environmental variability in the environment is a viable solution to the enigma of soil animal diversity.

12.
Glob Chang Biol ; 25(10): 3549-3561, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31301198

RESUMEN

Theory suggests that more complex food webs promote stability and can buffer the effects of perturbations, such as drought, on soil organisms and ecosystem functions. Here, we tested experimentally how soil food web trophic complexity modulates the response to drought of soil functions related to carbon cycling and the capture and transfer below-ground of recent photosynthate by plants. We constructed experimental systems comprising soil communities with one, two or three trophic levels (microorganisms, detritivores and predators) and subjected them to drought. We investigated how food web trophic complexity in interaction with drought influenced litter decomposition, soil CO2 efflux, mycorrhizal colonization, fungal production, microbial communities and soil fauna biomass. Plants were pulse-labelled after the drought with 13 C-CO2 to quantify the capture of recent photosynthate and its transfer below-ground. Overall, our results show that drought and soil food web trophic complexity do not interact to affect soil functions and microbial community composition, but act independently, with an overall stronger effect of drought. After drought, the net uptake of 13 C by plants was reduced and its retention in plant biomass was greater, leading to a strong decrease in carbon transfer below-ground. Although food web trophic complexity influenced the biomass of Collembola and fungal hyphal length, 13 C enrichment and the net transfer of carbon from plant shoots to microbes and soil CO2 efflux were not affected significantly by varying the number of trophic groups. Our results indicate that drought has a strong effect on above-ground-below-ground linkages by reducing the flow of recent photosynthate. Our results emphasize the sensitivity of the critical pathway of recent photosynthate transfer from plants to soil organisms to a drought perturbation, and show that these effects may not be mitigated by the trophic complexity of soil communities, at least at the level manipulated in this experiment.


Asunto(s)
Cadena Alimentaria , Suelo , Sequías , Ecosistema , Microbiología del Suelo
13.
PeerJ ; 7: e7035, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31183258

RESUMEN

The impact of productivity on species diversity is often studied at small spatial scales and without taking additional environmental factors into account. Focusing on small spatial scales removes important regional scale effects, such as the role of land cover heterogeneity. Here, we use a regional spatial scale (10 km square) to establish the relationship between productivity and vascular plant species richness across the island of Ireland that takes into account variation in land cover. We used generalized additive mixed effects models to relate species richness, estimated from biological records, to plant productivity. Productivity was quantified by the satellite-derived enhanced vegetation index. The productivity-diversity relationship was fitted for three land cover types: pasture-dominated, heterogeneous, and non-pasture-dominated landscapes. We find that species richness decreases with increasing productivity, especially at higher productivity levels. This decreasing relationship appears to be driven by pasture-dominated areas. The relationship between species richness and heterogeneity in productivity (both spatial and temporal) varies with land cover. Our results suggest that the impact of pasture on species richness extends beyond field level. The effect of human modified landscapes, therefore, is important to consider when investigating classical ecological relationships, particularly at the wider landscape scale.

14.
Glob Chang Biol ; 24(12): 5853-5866, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30246490

RESUMEN

Warming, nutrient enrichment and biodiversity modification are among the most pervasive components of human-induced global environmental change. We know little about their cumulative effects on ecosystems; however, even though this knowledge is fundamental to predicting and managing their consequences in a changing world. Here, we show that shifts in predator species composition can moderate both the individual and combined effects of warming and nutrient enrichment in marine systems. However, all three aspects of global change also acted independently to alter different functional groups in our flow-through marine rock-pool mesocosms. Specifically, warming reduced macroalgal biomass and assemblage productivity, whereas enrichment led to increased abundance of meso-invertebrate consumers, and loss of predator species led to increased gastropod grazer biomass. This disparity in responses, both across trophic levels (macroalgae and intermediate consumers), and between detecting additive effects on aggregate measures of ecosystem functioning, yet interactive effects on community composition, illustrates that our forecasting ability depends strongly on the level of ecological complexity incorporated within global change experiments. We conclude that biodiversity change-and loss of predator species in particular-plays a critical and overarching role in determining how ecological communities respond to stressors.


Asunto(s)
Biota , Cadena Alimentaria , Calentamiento Global , Nutrientes , Conducta Predatoria , Animales , Biomasa , Ecosistema , Gastrópodos/fisiología , Invertebrados/fisiología , Algas Marinas/fisiología
15.
Mar Pollut Bull ; 111(1-2): 305-310, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27377003

RESUMEN

Invasive species can impact native species and alter assemblage structure, which affects associated ecosystem functioning. The pervasive Pacific oyster, Crassostrea gigas, has been shown to affect the diversity and composition of many host ecosystems. We tested for effects of the presence of the invasive C. gigas on native assemblages by comparing them directly to assemblages associated with the declining native European oyster, Ostrea edulis. The presence of both oyster species was manipulated in intertidal and subtidal habitats and reefs were constructed at horizontal and vertical orientation to the substratum. After 12months, species diversity and benthic assemblage structure between assemblages with C. gigas and O. edulis were similar, but differed between habitats and orientation, suggesting that both oyster species were functionally similar in terms of biodiversity facilitation. These findings support evidence, that non-native species could play an important role in maintaining biodiversity in systems with declining populations of native species.


Asunto(s)
Biodiversidad , Crassostrea , Especies Introducidas , Ostrea , Animales , Ecosistema , Irlanda
16.
Ecol Lett ; 19(6): 668-78, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27094829

RESUMEN

The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology.


Asunto(s)
Ecosistema , Cadena Alimentaria , Modelos Biológicos , Conducta Predatoria/fisiología , Anfípodos , Animales , Crustáceos/fisiología , Peces/fisiología , Dinámica Poblacional
17.
Glob Chang Biol ; 21(11): 3971-81, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26147063

RESUMEN

It is widely accepted that global warming will adversely affect ecological communities. As ecosystems are simultaneously exposed to other anthropogenic influences, it is important to address the effects of climate change in the context of many stressors. Nutrient enrichment might offset some of the energy demands that warming can exert on organisms by stimulating growth at the base of the food web. It is important to know whether indirect effects of warming will be as ecologically significant as direct physiological effects. Declining body size is increasingly viewed as a universal response to warming, with the potential to alter trophic interactions. To address these issues, we used an outdoor array of marine mesocosms to examine the impacts of warming, nutrient enrichment and altered top-predator body size on a community comprised of the predator (shore crab Carcinus maenas), various grazing detritivores (amphipods) and algal resources. Warming increased mortality rates of crabs, but had no effect on their moulting rates. Nutrient enrichment and warming had near diametrically opposed effects on the assemblage, confirming that the ecological effects of these two stressors can cancel each other out. This suggests that nutrient-enriched systems might act as an energy refuge to populations of species under metabolic constraints due to warming. While there was a strong difference in assemblages between mesocosms containing crabs compared to mesocosms without crabs, decreasing crab size had no detectable effect on the amphipod or algal assemblages. This suggests that in allometrically balanced communities, the expected long-term effect of warming (declining body size) is not of similar ecological consequence to the direct physiological effects of warming, at least not over the six week duration of the experiment described here. More research is needed to determine the long-term effects of declining body size on the bioenergetic balance of natural communities.


Asunto(s)
Biota , Eutrofización , Cadena Alimentaria , Temperatura , Anfípodos/fisiología , Animales , Tamaño Corporal , Braquiuros/crecimiento & desarrollo , Braquiuros/fisiología , Irlanda del Norte , Conducta Predatoria , Algas Marinas/fisiología
18.
Am Nat ; 185(5): 680-92, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25905510

RESUMEN

Models of complex systems with n components typically have order n(2) parameters because each component can potentially interact with every other. When it is impractical to measure these parameters, one may choose random parameter values and study the emergent statistical properties at the system level. Many influential results in theoretical ecology have been derived from two key assumptions: that species interact with random partners at random intensities and that intraspecific competition is comparable between species. Under these assumptions, community dynamics can be described by a community matrix that is often amenable to mathematical analysis. We combine empirical data with mathematical theory to show that both of these assumptions lead to results that must be interpreted with caution. We examine 21 empirically derived community matrices constructed using three established, independent methods. The empirically derived systems are more stable by orders of magnitude than results from random matrices. This consistent disparity is not explained by existing results on predator-prey interactions. We investigate the key properties of empirical community matrices that distinguish them from random matrices. We show that network topology is less important than the relationship between a species' trophic position within the food web and its interaction strengths. We identify key features of empirical networks that must be preserved if random matrix models are to capture the features of real ecosystems.


Asunto(s)
Ecosistema , Conducta Predatoria , Animales , Conducta Competitiva , Cadena Alimentaria , Modelos Teóricos , Dinámica Poblacional
19.
Proc Biol Sci ; 282(1801): 20142620, 2015 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-25567651

RESUMEN

Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.


Asunto(s)
Ecología/métodos , Ecosistema , Insectos/fisiología , Nematodos/fisiología , Oligoquetos/fisiología , Animales , Biodiversidad , Modelos Biológicos
20.
J Anim Ecol ; 83(3): 693-701, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24117414

RESUMEN

Emergent multiple predator effects (MPEs) might radically alter predictions of predatory impact that are based solely on the impact of individuals. In the context of biological invasions, determining if and how the individual-level impacts of invasive predators relates to their impacts in multiple-individual situations will inform understanding of how such impacts might propagate through recipient communities. Here, we use functional responses (the relationship between prey consumption rate and prey density) to compare the impacts of the invasive freshwater mysid crustacean Hemimysis anomala with a native counterpart Mysis salemaai when feeding on basal cladoceran prey (i) as individuals, (ii) in conspecific groups and (iii) in conspecific groups in the presence of a higher fish predator, Gasterosteus aculeatus. In the absence of the higher predator, the invader consumed significantly more basal prey than the native, and consumption was additive for both mysid species - that is, group consumption was predictable from individual-level consumption. Invaders and natives were themselves equally susceptible to predation when feeding with the higher fish predator, but an MPE occurred only between the natives and higher predator, where consumption of basal prey was significantly reduced. In contrast, consumption by the invaders and higher predator remained additive. The presence of a higher predator serves to exacerbate the existing difference in individual-level consumption between invasive and native mysids. We attribute the mechanism responsible for the MPE associated with the native to a trait-mediated indirect interaction, and further suggest that the relative indifference to predator threat on the part of the invader contributes to its success and impacts within invaded communities.


Asunto(s)
Crustáceos/fisiología , Cadena Alimentaria , Especies Introducidas , Conducta Predatoria , Smegmamorpha/fisiología , Animales , Irlanda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...