Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Ann N Y Acad Sci ; 1536(1): 82-91, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38771698

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. The immunosuppressive functions of regulatory T lymphocytes (Tregs) are impaired in ALS, and correlate to disease progression. The phase 2a IMODALS trial reported an increase in Treg number in ALS patients following the administration of low-dose (ld) interleukin-2 (IL-2). We propose a pharmacometabolomics approach to decipher metabolic modifications occurring in patients treated with ld-IL-2 and its relationship with Treg response. Blood metabolomic profiles were determined on days D1, D64, and D85 from patients receiving 2 MIU of IL-2 (n = 12) and patients receiving a placebo (n = 12). We discriminated the three time points for the treatment group (average error rate of 42%). Among the important metabolites, kynurenine increased between D1 and D64, followed by a reduction at D85. The percentage increase of Treg number from D1 to D64, as predicted by the metabolome at D1, was highly correlated with the observed value. This study provided a proof of concept for metabolic characterization of the effect of ld-IL-2 in ALS. These data could present advances toward a personalized medicine approach and present pharmacometabolomics as a key tool to complement genomic and transcriptional data for drug characterization, leading to systems pharmacology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Interleucina-2 , Metabolómica , Linfocitos T Reguladores , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Interleucina-2/administración & dosificación , Interleucina-2/metabolismo , Metabolómica/métodos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Masculino , Persona de Mediana Edad , Femenino , Quinurenina/metabolismo , Anciano , Metaboloma/efectos de los fármacos
2.
Metabolomics ; 20(3): 61, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787468

RESUMEN

INTRODUCTION: IgA vasculitis diagnosis relies primarily on clinical features and is confirmed by pathological findings. To date, there is no reliable noninvasive diagnostic biomarker. OBJECTIVE: We aimed to explore the baseline serum metabolome of adult patients with IgA vasculitis to identify potential diagnostic biomarkers. METHODS: We performed a study comparing the serum metabolome of patients with IgA vasculitis to that of patients with inflammatory condition, namely spondyloarthritis. Serum analyses were performed by high-performance liquid chromatography-mass spectrometry. RESULTS: Fifty-five patients with IgA vasculitis and 77 controls with spondyloarthritis (age- and sex-matched) were included in this study. The median age of IgA vasculitis patients was 53 years. Two-thirds of patients were female (n = 32). At the time of vasculitis diagnosis, 100% of patients had skin involvement and 69% presented with glomerulonephritis (n = 38). Joint and digestive involvement were observed in 56% (n = 31) and 42% (n = 23) of patients. Four discriminative metabolites between the two groups were identified: 1-methyladenosine, L-glutamic acid, serotonin, and thymidine. The multivariate model built from the serum metabolomes of patients with IgA vasculitis and spondyloarthritis revealed an accuracy > 90%. As this model was significant according to the permutation test (p < 0.01), independent validation showed an excellent predictive value of the test set: sensitivity 98%; specificity 98%, positive predictive value 97% and negative predictive value 98%. CONCLUSION: To our knowledge, this study is the first to use the metabolomic approach for diagnostic purposes in adult IgA vasculitis, highlighting a specific diagnostic metabolome signature.


Asunto(s)
Biomarcadores , Inmunoglobulina A , Metaboloma , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Biomarcadores/sangre , Inmunoglobulina A/sangre , Cromatografía Líquida de Alta Presión , Vasculitis/diagnóstico , Vasculitis/metabolismo , Vasculitis/sangre , Metabolómica/métodos , Anciano , Espectrometría de Masas/métodos , Vasculitis por IgA/diagnóstico , Vasculitis por IgA/sangre , Vasculitis por IgA/metabolismo
3.
Nutrients ; 16(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38794769

RESUMEN

Several metabolites of the essential amino acid tryptophan have emerged as key players in gut homeostasis through different cellular pathways, particularly through metabolites which can activate the aryl hydrocarbon receptor (AHR). This study aimed to map the metabolism of tryptophan in early life and investigate the effects of specific metabolites on epithelial cells and barrier integrity. Twenty-one tryptophan metabolites were measured in the feces of full-term and preterm neonates as well as in human milk and formula. The ability of specific AHR metabolites to regulate cytokine-induced IL8 expression and maintain barrier integrity was assessed in Caco2 cells and human fetal organoids (HFOs). Overall, higher concentrations of tryptophan metabolites were measured in the feces of full-term neonates compared to those of preterm ones. Within AHR metabolites, indole-3-lactic acid (ILA) was significantly higher in the feces of full-term neonates. Human milk contained different levels of several tryptophan metabolites compared to formula. Particularly, within the AHR metabolites, indole-3-sulfate (I3S) and indole-3-acetic acid (IAA) were significantly higher compared to formula. Fecal-derived ILA and milk-derived IAA were capable of reducing TNFα-induced IL8 expression in Caco2 cells and HFOs in an AHR-dependent manner. Furthermore, fecal-derived ILA and milk-derived IAA significantly reduced TNFα-induced barrier disruption in HFOs.


Asunto(s)
Heces , Leche Humana , Receptores de Hidrocarburo de Aril , Triptófano , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Leche Humana/metabolismo , Leche Humana/química , Células CACO-2 , Triptófano/metabolismo , Recién Nacido , Heces/química , Ácidos Indolacéticos/metabolismo , Femenino , Recien Nacido Prematuro , Interleucina-8/metabolismo , Indoles/farmacología , Fórmulas Infantiles , Organoides/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
4.
J Lipid Res ; 65(5): 100544, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642894

RESUMEN

SK3 channels are potassium channels found to promote tumor aggressiveness. We have previously demonstrated that SK3 is regulated by synthetic ether lipids, but the role of endogenous ether lipids is unknown. Here, we have studied the role of endogenous alkyl- and alkenyl-ether lipids on SK3 channels and on the biology of cancer cells. Experiments revealed that the suppression of alkylglycerone phosphate synthase or plasmanylethanolamine desaturase 1, which are key enzymes for alkyl- and alkenyl-ether-lipid synthesis, respectively, decreased SK3 expression by increasing micro RNA (miR)-499 and miR-208 expression, leading to a decrease in SK3-dependent calcium entry, cell migration, and matrix metalloproteinase 9-dependent cell adhesion and invasion. We identified several ether lipids that promoted SK3 expression and found a differential role of alkyl- and alkenyl-ether lipids on SK3 activity. The expressions of alkylglycerone phosphate synthase, SK3, and miR were associated in clinical samples emphasizing the clinical consistency of our observations. To our knowledge, this is the first report showing that ether lipids differentially control tumor aggressiveness by regulating an ion channel. This insight provides new possibilities for therapeutic interventions, offering clinicians an opportunity to manipulate ion channel dysfunction by adjusting the composition of ether lipids.


Asunto(s)
Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Humanos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Movimiento Celular , MicroARNs/metabolismo , MicroARNs/genética , Lípidos/química , Línea Celular Tumoral , Invasividad Neoplásica , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética
5.
Ann Biol Clin (Paris) ; 82(1): 59-69, 2024 04 19.
Artículo en Francés | MEDLINE | ID: mdl-38638019

RESUMEN

We performed a method comparison between the Fujirebio® Lumipulse G AMH assay and the Roche® Elecsys AMH assay using the same pediatric samples. We described full pediatric gender and age-specific reference ranges for AMH using the Fujirebio® AMH assay on the Lumipulse G 600 II. The study was performed on 281 plasma samples collected in tubes with lithium heparin. The samples were from patients (135 males and 146 females) aged from 3 days to 22 years collected at the University Hospital Center of Tours. The Fujirebio® Lumipulse method showed excellent correlation with Roche® Elecsys but had a significant proportional positive bias. The data were used to propose pediatric reference values adapted to the Fujirebio® method. Our study described full pediatric gender and age-related reference ranges for AMH using the Fujirebio® AMH assay on the Lumipulse G600II. The delineation between normal male and female AMH concentrations make them valuable clinical tools for the monitoring of pediatric sexual and reproductive development from early childhood through the pubertal transition into adulthood.


Asunto(s)
Hormonas , Niño , Preescolar , Femenino , Humanos , Masculino , Recién Nacido , Lactante , Adolescente , Adulto Joven
6.
Placenta ; 150: 22-30, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581971

RESUMEN

INTRODUCTION: During pregnancy, the dynamic metabolic demands for fetal growth require a continuous supply of essential metabolites. Understanding maternal metabolome changes during gestation is crucial for predicting disease risks in neonates. METHODS: The study aimed to characterize the placental and amniotic fluid (AF) metabolomes during gestation in rats at gestational days GD-13 and 19 reflecting the end of the embryonic and fetal periods, respectively, and the maternal plasma, using metabolomics (LC-MS) and chemometrics. The objective was to highlight, through univariate and multivariate analyses, the complementarity of the data obtained from these different biological matrices. RESULTS: The biological matrix had more impact on the metabolome composition than the gestational stage. The placental and AF metabolomes showed specific metabolome evolving over the two gestational stages. Analyzing the three targeted metabolomes revealed evolving pathways in arginine and proline metabolism/glutathione metabolism and phenylalanine metabolism; purine metabolism; and carbohydrate metabolism. Significantly, lipid metabolism in the placenta exhibited substantial changes with higher levels of certain phosphatidylethanolamine and sphingomyelins at GD19 while some cholesteryl esters and some glycosphingolipids levels being in higher levels at GD13. DISCUSSION: These data highlight the metabolic gradients (mainly in placenta, also in AF, but only a few in plasma) observed through embryonic patterning and organ development during mid-to late gestation.


Asunto(s)
Líquido Amniótico , Metabolómica , Placenta , Femenino , Animales , Embarazo , Líquido Amniótico/metabolismo , Líquido Amniótico/química , Placenta/metabolismo , Metabolómica/métodos , Ratas , Metaboloma , Feto/metabolismo
8.
J Exp Clin Cancer Res ; 43(1): 43, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321568

RESUMEN

BACKGROUND: Angioimmunoblastic T-cell lymphoma (AITL) is a malignancy with very poor survival outcome, in urgent need of more specific therapeutic strategies. The drivers of malignancy in this disease are CD4+ follicular helper T cells (Tfh). The metabolism of these malignant Tfh cells was not yet elucidated. Therefore, we decided to identify their metabolic requirements with the objective to propose a novel therapeutic option. METHODS: To reveal the prominent metabolic pathways used by the AITL lymphoma cells, we relied on metabolomic and proteomic analysis of murine AITL (mAITL) T cells isolated from our established mAITL model. We confirmed these results using AITL patient and healthy T cell expression data. RESULTS: Strikingly, the mAITL Tfh cells were highly dependent on the second branch of the Kennedy pathway, the choline lipid pathway, responsible for the production of the major membrane constituent phosphatidylcholine. Moreover, gene expression data from Tfh cells isolated from AITL patient tumors, confirmed the upregulation of the choline lipid pathway. Several enzymes involved in this pathway such as choline kinase, catalyzing the first step in the phosphatidylcholine pathway, are upregulated in multiple tumors other than AITL. Here we showed that treatment of our mAITL preclinical mouse model with a fatty acid oxydation inhibitor, significantly increased their survival and even reverted the exhausted CD8 T cells in the tumor into potent cytotoxic anti-tumor cells. Specific inhibition of Chokα confirmed the importance of the phosphatidylcholine production pathway in neoplastic CD4 + T cells, nearly eradicating mAITL Tfh cells from the tumors. Finally, the same inhibitor induced in human AITL lymphoma biopsies cell death of the majority of the hAITL PD-1high neoplastic cells. CONCLUSION: Our results suggest that interfering with choline metabolism in AITL reveals a specific metabolic vulnerability and might represent a new therapeutic strategy for these patients.


Asunto(s)
Linfadenopatía Inmunoblástica , Linfoma de Células T , Linfoma , Humanos , Animales , Ratones , Proteómica , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Colaboradores-Inductores/patología , Linfadenopatía Inmunoblástica/genética , Linfadenopatía Inmunoblástica/metabolismo , Linfadenopatía Inmunoblástica/patología , Linfoma de Células T/genética , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Fosfatidilcolinas/metabolismo , Linfoma/metabolismo , Linfoma/patología
9.
Can J Aging ; : 1-7, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38268103

RESUMEN

This study aimed to develop an efficient data collection and curation process for all drugs and natural health products (NHPs) used by participants to the Canadian Longitudinal Study on Aging (CLSA). The three-step sequential process consisted of (a) mapping drug inputs collected through the CLSA to the Health Canada Drug Product Database (DPD), (b) algorithm recoding of unmapped drug and NHP inputs, and (c) manual recoding of unmapped drug and NHP inputs. Among the 30,097 CLSA comprehensive cohort participants, 26,000 (86.4%) were using a drug or an NHP with a mean of 5.3 (SD 3.8) inputs per participant user for a total of 137,366 inputs. Of those inputs, 70,177 (51.1%) were mapped to the Health Canada DPD, 20,729 (15.1%) were recoded by algorithms, and 44,108 (32.1%) were manually recoded. The Direct algorithm correctly classified 99.4 per cent of drug inputs and 99.5 per cent of NHP inputs. We developed an efficient three-step process for drug and NHP data collection and curation for use in a longitudinal cohort.

10.
Ann Rheum Dis ; 83(3): 312-323, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38049981

RESUMEN

OBJECTIVES: Alterations in tryptophan (Trp) metabolism have been reported in inflammatory diseases, including rheumatoid arthritis (RA). However, understanding whether these alterations participate in RA development and can be considered putative therapeutic targets remains undetermined.In this study, we combined quantitative Trp metabolomics in the serum from patients with RA and corrective administration of a recombinant enzyme in experimental arthritis to address this question. METHODS: Targeted quantitative Trp metabolomics was performed on the serum from 574 previously untreated patients with RA from the ESPOIR (Etude et Suivi des POlyarthrites Indifférenciées Récentes) cohort and 98 healthy subjects. A validation cohort involved 69 established patients with RA. Dosages were also done on the serum of collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) mice and controls. A proof-of-concept study evaluating the therapeutic potency of targeting the kynurenine pathway was performed in the CAIA model. RESULTS: Differential analysis revealed dramatic changes in Trp metabolite levels in patients with RA compared with healthy controls. Decreased levels of kynurenic (KYNA) and xanthurenic (XANA) acids and indole derivatives, as well as an increased level of quinolinic acid (QUIN), were found in the serum of patients with RA. They correlated positively with disease severity (assessed by both circulating biomarkers and disease activity scores) and negatively with quality-of-life scores. Similar profiles of kynurenine pathway metabolites were observed in the CAIA and CIA models. From a mechanistic perspective, we demonstrated that QUIN favours human fibroblast-like synoviocyte proliferation and affected their cellular metabolism, through inducing both mitochondrial respiration and glycolysis. Finally, systemic administration of the recombinant enzyme aminoadipate aminotransferase, responsible for the generation of XANA and KYNA, was protective in the CAIA model. CONCLUSIONS: Altogether, our preclinical and clinical data indicate that alterations in the Trp metabolism play an active role in the pathogenesis of RA and could be considered as a new therapeutic avenue.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Humanos , Animales , Ratones , Triptófano/uso terapéutico , Quinurenina/uso terapéutico , Biomarcadores , Artritis Experimental/patología
11.
Alcohol Clin Exp Res (Hoboken) ; 47(5): 856-867, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36871955

RESUMEN

BACKGROUND AND PURPOSE: Gut bacteria metabolize tryptophan into indoles. Intestinal levels of the tryptophan metabolite indole-3-acetic acid are reduced in patients with alcohol-associated hepatitis. Supplementation of indole-3-acetic acid protects against ethanol-induced liver disease in mice. The aim of this study was to evaluate the effect of engineered bacteria producing indoles as Aryl-hydrocarbon receptor (Ahr) agonists. METHODS: C57BL/6 mice were subjected to chronic-plus-binge ethanol feeding and orally given PBS, control Escherichia coli Nissle 1917 (EcN) or engineered EcN-Ahr. The effects of EcN and EcN-Ahr were also examined in mice lacking Ahr in interleukin 22 (Il22)-producing cells. RESULTS: Through the deletion of endogenous genes trpR and tnaA, coupled with overexpression of a feedback-resistant tryptophan biosynthesis operon, EcN-Ahr were engineered to overproduce tryptophan. Additional engineering allowed conversion of this tryptophan to indoles including indole-3-acetic acid and indole-3-lactic acid. EcN-Ahr ameliorated ethanol-induced liver disease in C57BL/6 mice. EcN-Ahr upregulated intestinal gene expression of Cyp1a1, Nrf2, Il22, Reg3b, and Reg3g, and increased Il22-expressing type 3 innate lymphoid cells. In addition, EcN-Ahr reduced translocation of bacteria to the liver. The beneficial effect of EcN-Ahr was abrogated in mice lacking Ahr expression in Il22-producing immune cells. CONCLUSIONS: Our findings indicate that tryptophan metabolites locally produced by engineered gut bacteria mitigate liver disease via Ahr-mediated activation in intestinal immune cells.

12.
Pharmaceutics ; 15(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36839763

RESUMEN

Sonoporation using microbubble-assisted ultrasound increases the permeability of a biological barrier to therapeutic molecules. Application of this method to the round window membrane could improve the delivery of therapeutics to the inner ear. The aim of this study was to assess the safety of sonoporation of the round window membrane in a sheep model. To achieve this objective, we assessed auditory function and cochlear heating, and analysed the metabolomics profiles of perilymph collected after sonoporation, comparing them with those of the control ear in the same animal. Six normal-hearing ewes were studied, with one sonoporation ear and one control ear for each. A mastoidectomy was performed on both ears. On the sonoporation side, Vevo MicroMarker® microbubbles (MBs; VisualSonics-Fujifilm, Amsterdam, The Netherlands) at a concentration of 2 × 108 MB/mL were locally injected into the middle ear and exposed to 1.1 MHz sinusoidal ultrasonic waves at 0.3 MPa negative peak pressure with 40% duty cycle and 100 µs interpulse period for 1 min; this was repeated three times with 1 min between applications. The sonoporation protocol did not induce any hearing impairment or toxic overheating compared with the control condition. The metabolomic analysis did not reveal any significant metabolic difference between perilymph samples from the sonoporation and control ears. The results suggest that sonoporation of the round window membrane does not cause damage to the inner ear in a sheep model.

13.
Inflamm Bowel Dis ; 29(5): 684-694, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36637175

RESUMEN

BACKGROUND: Both the Crohn's disease exclusion diet combined with partial enteral nutrition (CDED+PEN) and exclusive enteral nutrition (EEN) can induce remission in mild-to-moderate pediatric Crohn's disease and are associated with a marked decrease in fecal kynurenine levels. This suggests a link between clinical outcome of dietary therapy and changes in tryptophan metabolism pathways. Here, we characterize the changes in several fecal tryptophan metabolites induced by CDED+PEN or EEN and their association with remission. METHODS: A total of 21 tryptophan metabolites were quantified in fecal samples from a 12-week prospective randomized trial with CDED+PEN or EEN for induction of remission in mild to moderate pediatric Crohn's disease. Tryptophan metabolites at week 0 (W0), W6, and W12 of 73 samples were quantitatively measured by liquid chromatography coupled with triple quadrupole mass spectrometry, and data were analyzed according to clinical groups of baselines (W0), induced remission at W6, no remission, sustained remission at W12, and nonsustained remission. RESULTS: Reduction in components of the kynurenine pathway, such as kynurenine and quinolinic acid, were strongly associated with induced remission with both CDED+PEN and EEN, which were maintained in sustained remission. Specific serotonin pathway metabolites, such as melatonin, N-acetylserotonin, and 5-OH-tryptophan, were significantly increased in fecal samples from patients maintaining remission at W12 with both CDED+PEN and EEN. Importantly, in samples from patients failing to sustain remission, no changes were observed. Remission induction with EEN differs from CDED+PEN, particularly the moderate effects on indole pathway metabolites. The ratios of kynurenine and melatonin and quinolinic acid and melatonin perform well as markers for sustained remission. CONCLUSIONS: The reduction in specific kynurenine pathway compounds and the increase in serotonin pathway compounds are associated with diet-induced and sustained remission. Further studies are warranted to assess causality and the association of these metabolites with specific diet and lifestyle factors, affecting sustained clinical remission.


We show that fecal tryptophan metabolites are associated with remission following dietary therapy in a prospective clinical trial of pediatric Crohn's disease patients. Our study shows that reduction in some kynurenine pathway metabolites and the increase in serotonin pathway compounds are associated with diet-induced and sustained remission. These compounds may play a role in mediating the mechanism of action of dietary therapy.


Asunto(s)
Enfermedad de Crohn , Melatonina , Niño , Humanos , Enfermedad de Crohn/terapia , Quinurenina , Triptófano , Estudios Prospectivos , Ácido Quinolínico , Serotonina , Dieta , Inducción de Remisión
14.
Mol Psychiatry ; 28(2): 801-809, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36434055

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD. Thus, our objective was to characterize glutamate dysfunctions in adult subjects with ASD by quantifying (1) glutamate levels in the cingulate cortex and periphery using proton magnetic resonance spectroscopy and metabolomics, and (2) mGluR5 brain density in this population and in a validated animal model of ASD (prenatal exposure to valproate) at developmental stages corresponding to childhood and adolescence in humans using positron emission tomography. No modifications in cingulate Glu levels were observed between individuals with ASD and controls further supporting the difficulty to evaluate modifications in excitatory transmission using spectroscopy in this population, and the complexity of its glutamate-related changes. Our imaging results showed an overall increased density in mGluR5 in adults with ASD, that was only observed mostly subcortically in adolescent male rats prenatally exposed to valproic acid, and not detected in the stage corresponding to childhood in the same animals. This suggest that clinical changes in mGluR5 density could reflect the adaptation of the glutamatergic dysfunctions occurring earlier rather than being key to the pathophysiology of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Embarazo , Femenino , Adolescente , Adulto , Masculino , Ratas , Animales , Niño , Ácido Glutámico , Encéfalo , Ácido Valproico , Sinapsis
15.
Talanta ; 253: 123932, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36155322

RESUMEN

To facilitate application in ophthalmological and systemic diseases, there is a need to standardize preanalytical and analytical steps for metabo-lipidomics in human tears. We assessed different methods for each step of the workflow, from sampling to omics profiles acquisition, to provide the largest metabo-lipidomic coverage with the most robust analytical criteria in human tears. We compared reproducibility according to different extraction methods, two sampling techniques, three volumes (2 µL, 5 µL, 10 µL) and eye laterality using ultra-high-performance liquid chromatography coupled with tandem high-resolution mass spectrometry for metabolomic and lipidomic application. The effect of age on the tear metabo-lipidome was also investigated in healthy subjects. The extraction method using methanol/water provided the best results for Schirmer strip metabolomics, while Folch extraction was superior for lipidomics, whatever the sampling method used. When comparing both sampling methods, microcapillary glass tube was superior to Schirmer strip for metabolomics but comparable for lipidomics. The 5 µL volume provided a satisfying metabo-lipidomic coverage. There was no significant difference in tear metabo-lipidome between both eyes in healthy subjects. While most metabolites and lipids where not influenced by age, the phenylalanine-tyrosine-tryptophan pathway, aminoacyl t-RNA biosynthesis, and alanine-aspartate-glutamate metabolism were the 3 principal pathways associated with the 15 most variable metabolites according to age. The current findings will contribute to improve metabo-lipidomic workflow in human tears for the identification of new biomarkers. Preanalytical and analytical standardization is mandatory in order to perform better between-study comparisons and increase the chances of transferring laboratory findings into clinical practice.


Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Humanos , Cromatografía Líquida de Alta Presión , Reproducibilidad de los Resultados , Metabolómica
16.
Gut ; 72(7): 1296-1307, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36270778

RESUMEN

OBJECTIVE: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN: Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS: In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION: Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Triptófano/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Intestinos , Inflamación
17.
Pain ; 164(3): e144-e156, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35916738

RESUMEN

ABSTRACT: The pathophysiology of primary burning mouth syndrome (BMS) remains controversial. Targeted analyses or "omics" approach of saliva provide diagnostic or pathophysiological biomarkers. This pilot study's primary objective was to explore the pathophysiology of BMS through a comparative analysis of the salivary metabolome among 26 BMS female cases and 25 age- and sex-matched control subjects. Secondary objectives included comparative analyses of inflammatory cytokines, neuroinflammatory markers, and steroid hormones among cases and control subjects, and among BMS patients according to their clinical characteristics. Salivary metabolome, neuroinflammatory markers, cytokines, and steroids were, respectively, analysed by liquid chromatography coupled with mass spectrometry, ELISA and protease activity assay, and multiparametric Luminex method. Among the 166 detected metabolites, univariate analysis did not find any discriminant metabolite between groups. Supervised multivariate analysis divided patients into 2 groups with an accuracy of 60% but did not allow significant discrimination (permutation test, P = 0.35). Among the metabolites contributing to the model, 3 belonging to the tyrosine pathway ( l -dopa, l -tyrosine, and tyramine) were involved in the discrimination between cases and control subjects, and among BMS patients according to their levels of pain. Among the detectable molecules, levels of cytokines, steroid hormones, and neuroinflammatory markers did not differ between cases and control subjects and were not associated with characteristics of BMS patients. These results do not support the involvement of steroid hormones, inflammatory cytokines, or inflammatory neurogenic mediators in the pathophysiology of pain in BMS, whereas the observed shift in tyrosine metabolism may indicate an adaptative response to chronic pain or an impaired dopaminergic transmission.


Asunto(s)
Síndrome de Boca Ardiente , Dolor Crónico , Humanos , Femenino , Estudios de Casos y Controles , Proyectos Piloto , Saliva/química , Citocinas/metabolismo , Dolor Crónico/metabolismo , Metaboloma , Hormonas
18.
Eur J Med Chem ; 244: 114794, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36252395

RESUMEN

Age-related neurodegenerative diseases have in common the occurrence of cognitive impairment, a highly incapacitating process that involves the cholinergic neurotransmission system. The vesicular acetylcholine transporter (VAChT) positron emission tomography (PET) tracer [18F]fluoroethoxybenzovesamicol ((-)-[18F]FEOBV) has recently demonstrated its high value to detect alterations of the cholinergic system in Alzheimer's disease, Parkinson's disease and dementia with Lewy body. We present here the development of the new vesamicol derivative tracer (-)-(R,R)-5-[18F]fluorobenzovesamicol ((-)[18F]FBVM) that we compared to (-)[18F]FEOBV in the same experimental conditions. We show that: i) in vitro affinity for the VAChT was 50-fold higher for (-)FBVM (Ki = 0.9 ± 0.3 nM) than for (-)FEOBV (Ki = 61 ± 2.8 nM); ii) in vivo in rats, a higher signal-to-noise specific brain uptake and a lower binding to plasma proteins and peripheral defluorination were obtained for (-)[18F]FBVM compared to (-)[18F]FEOBV. Our findings demonstrate that (-)[18F]FBVM is a highly promising PET imaging tracer which could be sufficiently sensitive to detect in humans the cholinergic denervation that occurs in brain areas having a low density of VAChT such as the cortex and hippocampus.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Humanos , Animales , Ratas , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Colinérgicos
19.
Metabolites ; 12(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144268

RESUMEN

Neurodegenerative diseases (NDs), such as Alzheimer's (AD), Parkinson's (PD), and amyotrophic lateral sclerosis (ALS), share common pathological mechanisms, including metabolism alterations. However, their specific neuronal cell types affected and molecular biomarkers suggest that there are both common and specific alterations regarding metabolite levels. In this review, we were interested in identifying metabolite alterations that have been reported in preclinical models of NDs and that have also been documented as altered in NDs patients. Such alterations could represent interesting targets for the development of targeted therapy. Importantly, the translation of such findings from preclinical to clinical studies is primordial for the study of possible therapeutic agents. We found that N-acetyl-aspartate (NAA), myo-inositol, and glutamate are commonly altered in the three NDs investigated here. We also found other metabolites commonly altered in both AD and PD. In this review, we discuss the studies reporting such alterations and the possible pathological mechanism underlying them. Finally, we discuss clinical trials that have attempted to develop treatments targeting such alterations. We conclude that the treatment combination of both common and differential alterations would increase the chances of patients having access to efficient treatments for each ND.

20.
J Clin Med ; 11(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012907

RESUMEN

The pathophysiological mechanisms of noise-induced hearing loss remain unknown. Identifying biomarkers of noise-induced hearing loss may increase the understanding of pathophysiological mechanisms of deafness, allow for a more precise diagnosis, and inform personalized treatment. Emerging techniques such as metabolomics can help to identify these biomarkers. The objective of the present study was to investigate immediate-early changes in the perilymph metabolome following acoustic trauma. Metabolomic analysis was performed using liquid chromatography coupled to mass spectrophotometry to analyze metabolic changes in perilymph associated with noise-induced hearing loss. Sheep (n = 6) were exposed to a noise designed to induce substantial hearing loss. Perilymph was collected before and after acoustic trauma. Data were analyzed using univariate analysis and a supervised multivariate analysis based on partial least squares discriminant analysis. A metabolomic analysis showed an abundance of 213 metabolites. Four metabolites were significantly changed following acoustic trauma (Urocanate (p = 0.004, FC = 0.48), S-(5'-Adenosyl)-L-Homocysteine (p = 0.06, FC = 2.32), Trigonelline (p = 0.06, FC = 0.46) and N-Acetyl-L-Leucine (p = 0.09, FC = 2.02)). The approach allowed for the identification of new metabolites and metabolic pathways involved with acoustic trauma that were associated with auditory impairment (nerve damage, mechanical destruction, and oxidative stress). The results suggest that metabolomics provides a powerful approach to characterize inner ear metabolites which may lead to identification of new therapies and therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...