Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Oncol (Dordr) ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819630

RESUMEN

PURPOSE: Tumor heterogeneity complicates patient treatment and can be due to transitioning of cancer cells across phenotypic cell states. This process is associated with the acquisition of independence from an oncogenic driver, such as the estrogen receptor (ER) in breast cancer (BC), resulting in tumor progression, therapeutic failure and metastatic spread. The transcription factor ONECUT2 (OC2) has been shown to be a master regulator protein of metastatic castration-resistant prostate cancer (mCRPC) tumors that promotes lineage plasticity to a drug-resistant neuroendocrine (NEPC) phenotype. Here, we investigate the role of OC2 in the dynamic conversion between different molecular subtypes in BC. METHODS: We analyze OC2 expression and clinical significance in BC using public databases and immunohistochemical staining. In vitro, we perform RNA-Seq, RT-qPCR and western-blot after OC2 enforced expression. We also assess cellular effects of OC2 silencing and inhibition with a drug-like small molecule in vitro and in vivo. RESULTS: OC2 is highly expressed in a substantial subset of hormone receptor negative human BC tumors and tamoxifen-resistant models, and is associated with poor clinical outcome, lymph node metastasis and heightened clinical stage. OC2 inhibits ER expression and activity, suppresses a gene expression program associated with luminal differentiation and activates a basal-like state at the gene expression level. We also show that OC2 is required for cell growth and survival in metastatic BC models and that it can be targeted with a small molecule inhibitor providing a novel therapeutic strategy for patients with OC2 active tumors. CONCLUSIONS: The transcription factor OC2 is a driver of BC heterogeneity and a potential drug target in distinct cell states within the breast tumors.

2.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761978

RESUMEN

Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PC) that commonly emerges through a transdifferentiation process from prostate adenocarcinoma and evades conventional therapies. Extensive molecular research has revealed factors that drive lineage plasticity, uncovering novel therapeutic targets to be explored. A diverse array of targeting agents is currently under evaluation in pre-clinical and clinical studies with promising results in suppressing or reversing the neuroendocrine phenotype and inhibiting tumor growth and metastasis. This new knowledge has the potential to contribute to the development of novel therapeutic approaches that may enhance the clinical management and prognosis of this lethal disease. In the present review, we discuss molecular players involved in the neuroendocrine phenotype, and we explore therapeutic strategies that are currently under investigation for NEPC.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Fenotipo , Carcinoma Neuroendocrino/patología , Línea Celular Tumoral
3.
Pharmaceutics ; 15(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111688

RESUMEN

Type 2 diabetes (T2D) is a complex metabolic disease, which involves maintained hyperglycemia, mainly due to the development of an insulin resistance process. Metformin administration is the most prescribed treatment for diabetic patients. In a previously published study, we demonstrated that Pediococcus acidilactici pA1c® (pA1c) protects from insulin resistance and body weight gain in HFD-induced diabetic mice. The present work aimed to evaluate the possible beneficial impact of a 16-week administration of pA1c, metformin, or the combination of pA1c and metformin in a T2D HFD-induced mice model. We found that the simultaneous administration of both products attenuated hyperglycemia, increased high-intensity insulin-positive areas in the pancreas and HOMA-ß, decreased HOMA-IR and also provided more beneficial effects than metformin treatment (regarding HOMA-IR, serum C-peptide level, liver steatosis or hepatic Fasn expression), and pA1c treatment (regarding body weight or hepatic G6pase expression). The three treatments had a significant impact on fecal microbiota and led to differential composition of commensal bacterial populations. In conclusion, our findings suggest that P. acidilactici pA1c® administration improved metformin beneficial effects as a T2D treatment, and it would be a valuable therapeutic strategy to treat T2D.

4.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203275

RESUMEN

Small cell lung cancer (SCLC) stands out as the most aggressive form of lung cancer, characterized by an extremely high proliferation rate and a very poor prognosis, with a 5-year survival rate that falls below 7%. Approximately two-thirds of patients receive their diagnosis when the disease has already reached a metastatic or extensive stage, leaving chemotherapy as the remaining first-line treatment option. Other than the recent advances in immunotherapy, which have shown moderate results, SCLC patients cannot yet benefit from any approved targeted therapy, meaning that this cancer remains treated as a uniform entity, disregarding intra- or inter-tumoral heterogeneity. Continuous efforts and technological improvements have enabled the identification of new potential targets that could be used to implement novel therapeutic strategies. In this review, we provide an overview of the most recent approaches for SCLC treatment, providing an extensive compilation of the targeted therapies that are currently under clinical evaluation and inhibitor molecules with promising results in vitro and in vivo.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Agresión , Tecnología
5.
Nutrients ; 14(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35277051

RESUMEN

Prediabetes (PreD), which is associated with impaired glucose tolerance and fasting blood glucose, is a potential risk factor for type 2 diabetes mellitus (T2D). Growing evidence suggests the role of the gastrointestinal microbiota in both PreD and T2D, which opens the possibility for a novel nutritional approach, based on probiotics, for improving glucose regulation and delaying disease progression of PreD to T2D. In this light, the present study aimed to assess the antidiabetic properties of Pediococcus acidilactici (pA1c) in a murine model of high-fat diet (HFD)-induced T2D. For that purpose, C57BL/6 mice were given HFD enriched with either probiotic (1 × 1010 CFU/day) or placebo for 12 weeks. We determined body weight, fasting blood glucose, glucose tolerance, HOMA-IR and HOMA-ß index, C-peptide, GLP-1, leptin, and lipid profile. We also measured hepatic gene expression (G6P, PEPCK, GCK, IL-1ß, and IL-6) and examined pancreatic and intestinal histology (% of GLP-1+ cells, % of goblet cells and villus length). We found that pA1c supplementation significantly attenuated body weight gain, mitigated glucose dysregulation by reducing fasting blood glucose levels, glucose tolerance test, leptin levels, and insulin resistance, increased C-peptide and GLP-1 levels, enhanced pancreatic function, and improved intestinal histology. These findings indicate that pA1c improved HFD-induced T2D derived insulin resistance and intestinal histology, as well as protected from body weight increase. Together, our study proposes that pA1c may be a promising new dietary management strategy to improve metabolic disorders in PreD and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Pediococcus acidilactici , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Dieta Alta en Grasa/efectos adversos , Hipoglucemiantes , Ratones , Ratones Endogámicos C57BL
6.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34832966

RESUMEN

Neuroblastoma is the most frequent malignant extracranial solid tumor of infancy. The overall objective of this work consists of determining the presence of alterations in the p53/MDM2/p14ARF signaling pathway in neuroblastoma cell lines and deciphering their possible relationship with resistance to known antineoplastic drugs and to differentiation agents. Firstly, we characterized 10 neuroblastoma cell lines for alterations at the p53/MDM2/p14ARF signaling pathway by analysis of TP53 point mutations, MYCN and MDM2 amplification, and p14ARF methylation, homozygous deletions, and expression. Secondly, we chose SK-N-FI (mutated at TP53) and SK-N-Be(2) (wild-type TP53) cell lines, treated them with chemotherapeutic agents (doxorubicin, etoposide, cisplatin, and melphalan) and with two isomers of retinoic acid (RA): (9-cis and all-trans). Finally, we analyzed the distribution of the cell cycle, the induction of apoptosis, and the expression levels of p53, p21, and Bcl-2 in those two cell lines. P14ARF did not present promoter methylation, homozygous deletions, and protein expression in any of the 10 neuroblastoma cell lines. One TP53 point mutation was detected in the SK-N-FI cell line. MYCN amplification was frequent, while most cell lines did not present MDM2 amplification. Treatment of SK-N-FI and SK-N-Be(2) cells with doxorubicin, etoposide, cisplatin, and melphalan increased apoptosis and blocked the cycle in G2/M, while retinoic acid isomers induced apoptosis and decreased the percentage of cells in S phase in TP53 mutated SK-N-FI cells, but not in TP53 wild-type SK-N-Be(2) cells. Treatment with cisplatin, melphalan, or 9-cis RA decreased p53 expression levels in SK-N-FI cells but not in SK-N-Be (2). The expression of p21 was not modified in either of the two cell lines. Bcl-2 levels were reduced only in SK-N-FI cells after treatment with cisplatin. However, treatments with doxorubicin, etoposide, or 9-cis-RA did not modify the levels of this protein in either of the two cell lines. In conclusion, TP53 mutated SK-N-FI cells respond better to the retinoic isomers than TP53 wild-type SK-N-Be(2) cells. Although these are in vitro results, it seems that deciphering the molecular alterations of the p53/MDM2/p14ARF signaling pathway prior to treating patients of neuroblastoma might be useful for standardizing therapies with the aim of improving survival.

7.
Nutrients ; 13(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34578783

RESUMEN

The human body is host to a large number of microorganisms which conform the human microbiota, that is known to play an important role in health and disease. Although most of the microorganisms that coexist with us are located in the gut, microbial cells present in other locations (like skin, respiratory tract, genitourinary tract, and the vaginal zone in women) also play a significant role regulating host health. The fact that there are different kinds of microbiota in different body areas does not mean they are independent. It is plausible that connection exist, and different studies have shown that the microbiota present in different zones of the human body has the capability of communicating through secondary metabolites. In this sense, dysbiosis in one body compartment may negatively affect distal areas and contribute to the development of diseases. Accordingly, it could be hypothesized that the whole set of microbial cells that inhabit the human body form a system, and the dialogue between the different host microbiotas may be a contributing factor for the susceptibility to developing diseased states. For this reason, the present review aims to integrate the available literature on the relationship between the different human microbiotas and understand how changes in the microbiota in one body region can influence other microbiota communities in a bidirectional process. The findings suggest that the different microbiotas may act in a coordinated way to decisively influence human well-being. This new integrative paradigm opens new insights in the microbiota field of research and its relationship with human health that should be taken into account in future studies.


Asunto(s)
Disbiosis/metabolismo , Microbiota , Femenino , Microbioma Gastrointestinal , Estado de Salud , Humanos , Masculino , Boca/microbiología , Sistema Respiratorio/microbiología , Piel/microbiología , Sistema Urogenital/microbiología , Vagina/microbiología
8.
Foods ; 10(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34359462

RESUMEN

In the last decade, the gastrointestinal microbiota has been recognised as being essential for health. Indeed, several publications have documented the suitability of probiotics, prebiotics, and symbiotics in the management of different diseases such as diabetes mellitus (DM). Advances in laboratory techniques have allowed the identification and characterisation of new biologically active molecules, referred to as "postbiotics". Postbiotics are defined as functional bioactive compounds obtained from food-grade microorganisms that confer health benefits when administered in adequate amounts. They include cell structures, secreted molecules or metabolic by-products, and inanimate microorganisms. This heterogeneous group of molecules presents a broad range of mechanisms and may exhibit some advantages over traditional "biotics" such as probiotics and prebiotics. Owing to the growing incidence of DM worldwide and the implications of the microbiota in the disease progression, postbiotics appear to be good candidates as novel therapeutic targets. In the present review, we summarise the current knowledge about postbiotic compounds and their potential application in diabetes management. Additionally, we envision future perspectives on this topic. In summary, the results indicate that postbiotics hold promise as a potential novel therapeutic strategy for DM.

9.
Int J Mol Sci ; 22(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063173

RESUMEN

Recent studies have suggested that flavonoids such as quercetin and probiotics such as Bifidobacterium bifidum (Bf) and Lactobacillus gasseri (Lg) could play a relevant role in inhibiting colon cancer cell growth. Our study investigated the role of dietary supplementation with microencapsulated probiotics (Bf and Lg) along with quercetin in the development of mouse colorectal cancer (CRC). Methods: Adenomatous polyposis coli/multiple intestinal neoplasia (ApcMin/+) mice were fed a standard diet or the same diet supplemented with microencapsulated probiotics (Bf and Lg strains, 107 CFU/100 g food) or both probiotics strains plus microencapsulated quercetin (15 mg/100 g food) for 73 days. Changes in body and organ weights, energy metabolism, intestinal microbiota, and colon tissue were determined. The expression of genes related to the Wnt pathway was also analyzed in colon samples. Results: Dietary supplementation with microencapsulated probiotics or microencapsulated probiotics plus quercetin reduced body weight loss and intestinal bleeding in ApcMin/+ mice. An improvement in energy expenditure was observed after 8 weeks but not after 10 weeks of treatment. A supplemented diet with microencapsulated Bf and Lg reduced the number of aberrant crypt foci (ACF) and adenomas by 45% and 60%, respectively, whereas the supplementation with Bf, Lg and quercetin decreased the number of ACF and adenomas by 57% and 80%, respectively. Microencapsulated Bf and Lg in combination with quercetin could exert inhibition of the canonical Wnt/ß-catenin signaling pathway in the colon of ApcMin/+ mice Conclusions: The administration of microencapsulated Bf and Lg, individually or in combination with quercetin, inhibits the CRC development in ApcMin/+ mice.


Asunto(s)
Poliposis Adenomatosa del Colon/metabolismo , Bifidobacterium bifidum/citología , Carcinogénesis/patología , Células Inmovilizadas/citología , Neoplasias Colorrectales/patología , Lactobacillus gasseri/citología , Quercetina/farmacología , Animales , Peso Corporal/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Colon/patología , Recuento de Colonia Microbiana , Neoplasias Colorrectales/genética , Metabolismo Energético/efectos de los fármacos , Heces/microbiología , Conducta Alimentaria , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos C57BL , Sangre Oculta , Tamaño de los Órganos/efectos de los fármacos , Probióticos/farmacología , Vía de Señalización Wnt/efectos de los fármacos
10.
Foods ; 9(3)2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32155967

RESUMEN

Optimization of food storage has become a central issue for food science and biotechnology, especially in the field of functional foods. The aim of this work was to investigate the influence of different storage strategies in a fermented food product (FFP) and further determine whether the regular storage (room temperature (RT) and standard packaging (SP)) could be refined. Eight experimental conditions (four different temperatures × two packaging) were simulated and changes in FFP's microbial ecology (total bacteria, lactic acid bacteria (LAB), and yeasts) and physicochemical characteristics (pH and moisture content (MC)) were determined following 1, 3, 6, and 12 months. All conditions tested showed a decline in microbial content due to the effect of the temperature, 37 °C being the most detrimental condition, while -20 and 4 °C seemed to be better than RT in some parameters. Vacuum packaging (VP) only had a major effect on MC and we found that VP preserved greater MC values than SP at 3, 6, and 12 months. The correlation analysis revealed that total bacteria, LAB, and yeasts were positively associated, and also both pH and MC showed a correlation. According to our results and with the purpose to maintain the load of viable microorganisms, we observed that the best storage conditions should contemplate SP and freezing or cooling temperature during a period no longer than 3 months.

11.
Nutrients ; 11(10)2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31635188

RESUMEN

Type 2 diabetes (T2D) is a complex metabolic disease, which involves a maintained hyperglycemia due to the development of an insulin resistance process. Among multiple risk factors, host intestinal microbiota has received increasing attention in T2D etiology and progression. In the present study, we have explored the effect of long-term supplementation with a non-dairy fermented food product (FFP) in Zucker Diabetic and Fatty (ZDF) rats T2D model. The supplementation with FFP induced an improvement in glucose homeostasis according to the results obtained from fasting blood glucose levels, glucose tolerance test, and pancreatic function. Importantly, a significantly reduced intestinal glucose absorption was found in the FFP-treated rats. Supplemented animals also showed a greater survival suggesting a better health status as a result of the FFP intake. Some dissimilarities have been observed in the gut microbiota population between control and FFP-treated rats, and interestingly a tendency for better cardiometabolic markers values was appreciated in this group. However, no significant differences were observed in body weight, body composition, or food intake between groups. These findings suggest that FFP induced gut microbiota modifications in ZDF rats that improved glucose metabolism and protected from T2D development.


Asunto(s)
Diabetes Mellitus Tipo 2/prevención & control , Alimentos Fermentados , Lactobacillales , Animales , Glucemia , Composición Corporal , Peso Corporal , Suplementos Dietéticos , Fermentación , Alimentos Funcionales , Intolerancia a la Glucosa , Masculino , Ratas , Ratas Zucker
12.
Cancer Genet Cytogenet ; 174(1): 1-8, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17350460

RESUMEN

Tumor suppressor genes can be inactivated by various mechanisms, including promoter hypermethylation and loss of heterozygosity. We screened the 10q locus for loss of heterozygosity and the promoter methylation status of PTEN, MGMT, MXI1, and FGFR2 in neuroblastic tumors and neuroblastoma cell lines. Expression of these genes in cell lines was analyzed with reverse transcriptase-polymerase chain reaction. Loss of heterozygosity at 10q was detected in 18% of tumors and microsatellite instability in 14%. Promoter hypermethylation of MGMT appeared in 8% of tumors and 25% of cell lines. Correlation between methylation status and lack of expression was evident for PTEN, FGFR2, and MXI1 and was less clear for MGMT. No associations between these alterations and MYCN amplification, 1p deletion, or aggressive tumor histology could be demonstrated, singly or in combination. These data suggest that 10q alterations might be implicated in the development of a small number of neuroblastomas.


Asunto(s)
Cromosomas Humanos Par 10/genética , Pérdida de Heterocigocidad/genética , Inestabilidad de Microsatélites , Neuroblastoma/genética , Línea Celular Tumoral , Metilación de ADN , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Marcadores Genéticos , Humanos , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína p14ARF Supresora de Tumor/genética , Proteínas Supresoras de Tumor
13.
Int J Cancer ; 109(5): 673-9, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-14999773

RESUMEN

Neuroblastoma is the most common pediatric solid tumor. Although many allelic imbalances have been described, a bona fide tumor suppressor gene for this disease has not been found yet. In our study, we analyzed 2 genes, PTEN and DMBT1, mapping 10q23.31 and 10q25.3-26.1, respectively, which have been found frequently altered in other kinds of neoplasms. We screened both genes for homozygous deletions in 45 primary neuroblastic tumors and 12 neuroblastoma cell lines. Expression of these genes in cell lines was assessed by RT-PCR analysis. We could detect 2 of 41 (5%) primary tumors harboring PTEN homozygous deletions. Three of 41 (7%) primary tumors and 2 of 12 cell lines presented homozygous losses at the g14 STS on the DMBT1 locus. All cell lines analyzed expressed PTEN, but lack of DMBT1 mRNA expression was detected in 2 of them. We tried to see whether epigenetic mechanisms, such as aberrant promoter hypermethylation, had any role in DMBT1 silencing. The 2 cell lines lacking DMBT1 expression were treated with 5-aza-2'-deoxycytidine; DMBT1 expression was restored in only one of them (MC-IXC). From our work, we can conclude that PTEN and DMBT1 seem to contribute to the development of a small fraction of neuroblastomas, and that promoter hypermethylation might have a role in DMBT1 gene silencing.


Asunto(s)
Aglutininas , Neoplasias Encefálicas/genética , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Pérdida de Heterocigocidad , Neuroblastoma/genética , Monoéster Fosfórico Hidrolasas/genética , Receptores de Superficie Celular/genética , Proteínas Supresoras de Tumor/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Unión al Calcio , Línea Celular Tumoral , Metilación de ADN , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN , Humanos , Neuroblastoma/metabolismo , Fosfohidrolasa PTEN , Monoéster Fosfórico Hidrolasas/metabolismo , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA