Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38634137

RESUMEN

Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD) and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives and society. However, the underlying pathomechanisms are poorly understood and current therapies mostly aim at supporting patients in their daily life. This illustrates the urgent need to elucidate the pathogenesis, and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modelling of cognitive disorders in CKD. We discuss the use of mice, rats and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving therapy of people with CKD and MCI.

2.
Commun Biol ; 7(1): 446, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605154

RESUMEN

Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. This study highlights the role of zyxin for podocyte stability and function. We have found that zyxin is significantly up-regulated in podocytes after mechanical stretch and relocalizes from focal adhesions to actin filaments. In zyxin knockout podocytes, we found that the loss of zyxin reduced the expression of vinculin and VASP as well as the expression of matrix proteins, such as fibronectin. This suggests that zyxin is a central player in the translation of mechanical forces in podocytes. In vivo, zyxin is highly up-regulated in patients suffering from diabetic nephropathy and in hypertensive DOCA-salt treated mice. Furthermore, zyxin loss in mice resulted in proteinuria and effacement of podocyte foot processes that was measured by super resolution microscopy. This highlights the essential role of zyxin for podocyte maintenance in vitro and in vivo, especially under mechanical stretch.


Asunto(s)
Hipertensión Renal , Nefritis , Podocitos , Humanos , Ratones , Animales , Zixina/genética , Zixina/metabolismo , Podocitos/metabolismo , Citoesqueleto de Actina/metabolismo , Glomérulos Renales , Adhesiones Focales/metabolismo
3.
Am J Physiol Renal Physiol ; 326(5): F780-F791, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38482553

RESUMEN

Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of chronic kidney disease before the age of 25 yr. Nephrin, encoded by NPHS1, localizes to the slit diaphragm of glomerular podocytes and is the predominant structural component of the glomerular filtration barrier. Biallelic variants in NPHS1 can cause congenital nephrotic syndrome of the Finnish type, for which, to date, no causative therapy is available. Recently, adeno-associated virus (AAV) vectors targeting the glomerular podocyte have been assessed as a means for gene replacement therapy. Here, we established quantitative and reproducible phenotyping of a published, conditional Nphs1 knockout mouse model (Nphs1tm1.1Pgarg/J and Nphs2-Cre+) in preparation for a gene replacement study using AAV vectors. Nphs1 knockout mice (Nphs1fl/fl Nphs2-Cre+) exhibited 1) a median survival rate of 18 days (range: from 9 to 43 days; males: 16.5 days and females: 20 days); 2) an average foot process (FP) density of 1.0 FP/µm compared with 2.0 FP/µm in controls and a mean filtration slit density of 2.64 µm/µm2 compared with 4.36 µm/µm2 in controls; 3) a high number of proximal tubular microcysts; 4) the development of proteinuria within the first week of life as evidenced by urine albumin-to-creatinine ratios; and 5) significantly reduced levels of serum albumin and elevated blood urea nitrogen and creatinine levels. For none of these phenotypes, significant differences between sexes in Nphs1 knockout mice were observed. We quantitatively characterized five different phenotypic features of congenital nephrotic syndrome in Nphs1fl/fl Nphs2-Cre+ mice. Our results will facilitate future gene replacement therapy projects by allowing for sensitive detection of even subtle molecular effects.NEW & NOTEWORTHY To evaluate potential, even subtle molecular, therapeutic effects of gene replacement therapy (GRT) in a mouse model, prior rigorous quantifiable and reproducible disease phenotyping is necessary. Here, we, therefore, describe such a phenotyping effort in nephrin (Nphs1) knockout mice to establish the basis for GRT for congenital nephrotic syndrome. We believe that our findings set an important basis for upcoming/ongoing gene therapy approaches in the field of nephrology, especially for monogenic nephrotic syndrome.


Asunto(s)
Proteínas de la Membrana , Ratones Noqueados , Síndrome Nefrótico , Fenotipo , Podocitos , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Femenino , Masculino , Síndrome Nefrótico/genética , Síndrome Nefrótico/terapia , Podocitos/metabolismo , Modelos Animales de Enfermedad , Terapia Genética/métodos , Ratones , Vectores Genéticos
4.
Am J Physiol Renal Physiol ; 326(3): F369-F381, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205541

RESUMEN

Podocytes, specialized postmitotic cells, are central players in various kidney-related diseases. Zebrafish have become a valuable model system for studying podocyte biology because they are genetically easy to manipulate, transparent, and their glomerular structure is similar to that of mammals. This review provides an overview of the knowledge of podocyte biology in zebrafish larvae, with particular focus on their essential contribution to understanding the mechanisms that underlie kidney diseases as well as supporting drug development. In addition, special attention is given to advances in live-imaging techniques allowing the observation of dynamic processes, including podocyte motility, podocyte process behavior, and glomerulus maturation. The review further addresses the functional aspects of podocytes in zebrafish larvae. This includes topics such as glomerular filtration, ultrastructural analyses, and evaluation of podocyte response to nephrotoxic insults. Studies presented in this context have provided important insights into the maintenance and resistance of the glomerular filtration barrier in zebrafish larvae and explored the potential transferability of these findings to mammals such as mice, rats, and most importantly, humans. The recent ability to identify potential therapeutic targets represents a promising new way to identify drugs that could effectively treat podocyte-associated glomerulopathies in humans. In summary, this review gives an overview about the importance of zebrafish as a model for podocyte-related disease and targeted drug development. It also highlights the key role of advanced imaging techniques in transparent zebrafish larvae, improving our understanding of glomerular diseases and the significant potential for translation of these findings to humans.


Asunto(s)
Podocitos , Humanos , Animales , Ratones , Ratas , Pez Cebra , Glomérulos Renales , Barrera de Filtración Glomerular , Proteínas de Pez Cebra , Mamíferos
5.
Artículo en Inglés | MEDLINE | ID: mdl-38037533

RESUMEN

BACKGROUND AND HYPOTHESIS: Glucocorticoids are the treatment of choice for proteinuric patients with minimal-change disease (MCD) and primary focal and segmental glomerulosclerosis (FSGS). Immunosuppressive as well as direct effects on podocytes are believed to mediate their actions. In this study, we analyzed the anti-proteinuric effects of inhibition of the glucocorticoid receptor (GR) in glomerular epithelial cells, including podocytes. METHODS: We employed genetic and pharmacological approaches to inhibit the GR. Genetically, we used Pax8-Cre/GRfl/fl mice to specifically inactivate the GR in kidney epithelial cells. Pharmacologically, we utilized a glucocorticoid antagonist called mifepristone. RESULTS: Genetic inactivation of GR, specifically in kidney epithelial cells, using Pax8-Cre/GRfl/fl mice, ameliorated proteinuria following protein overload. We further tested the effects of pharmacological GR inhibition in three models and species: the puromycin-aminonucleoside-induced nephrosis model in rats, the protein overload model in mice and the inducible transgenic NTR/MTZ zebrafish larvae with specific and reversible podocyte injury. In all three models, both pharmacological GR activation and inhibition consistently and significantly ameliorated proteinuria. Additionally, we translated our findings to humans, where three nephrotic adult patients with MCD or primary FSGS with contraindications or insufficient responses to corticosteroids, were treated with mifepristone. This treatment resulted in a clinically relevant reduction of proteinuria. CONCLUSIONS: Thus, across multiple species and proteinuria models, both genetic and pharmacological GR inhibition was at least as effective as pronounced GR activation. While, the mechanism remains perplexing, GR inhibition may be a novel and targeted therapeutic approach to treat glomerular proteinuria potentially bypassing adverse actions of steroids.

6.
Sci Rep ; 13(1): 20961, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016974

RESUMEN

Messenger RNA (mRNA) therapies are emerging in different disease areas, but have not yet reached the kidney field. Our aim was to study the feasibility to treat the genetic defect in cystinosis using synthetic mRNA in cell models and ctns-/- zebrafish embryos. Cystinosis is a prototype lysosomal storage disorder caused by mutations in the CTNS gene, encoding the lysosomal cystine-H+ symporter cystinosin, and leading to cystine accumulation in all cells of the body. The kidneys are the first and the most severely affected organs, presenting glomerular and proximal tubular dysfunction, progressing to end-stage kidney failure. The current therapeutic standard cysteamine, reduces cystine levels, but has many side effects and does not restore kidney function. Here, we show that synthetic mRNA can restore lysosomal cystinosin expression following lipofection into CTNS-/- kidney cells and injection into ctns-/- zebrafish. A single CTNS mRNA administration decreases cellular cystine accumulation for up to 14 days in vitro. In the ctns-/- zebrafish, CTNS mRNA therapy improves proximal tubular reabsorption, reduces proteinuria, and restores brush border expression of the multi-ligand receptor megalin. Therefore, this proof-of-principle study takes the first steps in establishing an mRNA-based therapy to restore cystinosin expression, resulting in cystine reduction in vitro and in the ctns-/- larvae, and restoration of the zebrafish pronephros function.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Animales , Cistinosis/genética , Cistinosis/terapia , Cistina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , ARN Mensajero/genética , ARN Mensajero/uso terapéutico , Modelos Teóricos , Suplementos Dietéticos , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
7.
J Am Soc Nephrol ; 34(12): 1977-1990, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37752628

RESUMEN

BACKGROUND: FSGS affects the complex three-dimensional morphology of podocytes, resulting in loss of filtration barrier function and the development of sclerotic lesions. Therapies to treat FSGS are limited, and podocyte-specific drugs are unavailable. To address the need for treatments to delay or stop FSGS progression, researchers are exploring the repurposing of drugs that have been approved by the US Food and Drug Administration (FDA) for other purposes. METHODS: To identify drugs with potential to treat FSGS, we used a specific zebrafish screening strain to combine a high-content screening (HCS) approach with an in vivo model. This zebrafish screening strain expresses nitroreductase and the red fluorescent protein mCherry exclusively in podocytes (providing an indicator for podocyte depletion), as well as a circulating 78 kDa vitamin D-binding enhanced green fluorescent protein fusion protein (as a readout for proteinuria). To produce FSGS-like lesions in the zebrafish, we added 80 µ M metronidazole into the fish water. We used a specific screening microscope in conjunction with advanced image analysis methods to screen a library of 138 drugs and compounds (including some FDA-approved drugs) for podocyte-protective effects. Promising candidates were validated to be suitable for translational studies. RESULTS: After establishing this novel in vivo HCS assay, we identified seven drugs or compounds that were protective in our FSGS-like model. Validation experiments confirmed that the FDA-approved drug belinostat was protective against larval FSGS. Similar pan-histone deacetylase inhibitors also showed potential to reproduce this effect. CONCLUSIONS: Using an FSGS-like zebrafish model, we developed a novel in vivo HCS assay that identified belinostat and related pan-histone deacetylase inhibitors as potential candidates for treating FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Animales , Pez Cebra/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Histona Desacetilasas/metabolismo , Podocitos/metabolismo
8.
Leukemia ; 37(10): 2027-2035, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37587260

RESUMEN

Scribble complex proteins can influence cell fate decisions and self-renewal capacity of hematopoietic cells. While specific cellular functions of Scribble complex members are conserved in mammalian hematopoiesis, they appear to be highly context dependent. Using CRISPR/Cas9-based genetic screening, we have identified Scribble complex-related liabilities in AML including LLGL1. Despite its reported suppressive function in HSC self-renewal, inactivation of LLGL1 in AML confirms its relevant role for proliferative capacity and development of AML. Its function was conserved in human and murine models of AML and across various genetic backgrounds. Inactivation of LLGL1 results in loss of stemness-associated gene-expression including HoxA-genes and induces a GMP-like phenotype in the leukemia stem cell compartment. Re-expression of HoxA9 facilitates functional and phenotypic rescue. Collectively, these data establish LLGL1 as a specific dependency and putative target in AML and emphasizes its cell-type specific functions.


Asunto(s)
Proteínas del Citoesqueleto , Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas del Citoesqueleto/genética
9.
Nat Commun ; 14(1): 4414, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479685

RESUMEN

Elevation in soluble urokinase receptor (suPAR) and proteinuria are common signs in patients with moderate to severe coronavirus disease 2019 (COVID-19). Here we characterize a new type of proteinuria originating as part of a viral response. Inoculation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes increased suPAR levels and glomerulopathy in African green monkeys. Using an engineered mouse model with high suPAR expression, inhaled variants of SARS-CoV-2 spike S1 protein elicite proteinuria that could be blocked by either suPAR antibody or SARS-CoV-2 vaccination. In a cohort of 1991 COVID-19 patients, suPAR levels exhibit a stepwise association with proteinuria in non-Omicron, but not in Omicron infections, supporting our findings of biophysical and functional differences between variants of SARS-CoV-2 spike S1 protein and their binding to podocyte integrins. These insights are not limited to SARS-CoV-2 and define viral response proteinuria (VRP) as an innate immune mechanism and co-activation of podocyte integrins.


Asunto(s)
COVID-19 , Podocitos , Animales , Ratones , Chlorocebus aethiops , Humanos , Vacunas contra la COVID-19 , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , SARS-CoV-2 , Integrinas , Proteinuria
10.
Cells ; 12(13)2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37443829

RESUMEN

Glomerular disease due to podocyte malfunction is a major factor in the pathogenesis of chronic kidney disease. Identification of podocyte-specific signaling pathways is therefore a prerequisite to characterizing relevant disease pathways and developing novel treatment approaches. Here, we employed loss of function studies for EPB41L5 (Yurt) as a central podocyte gene to generate a cell type-specific disease model. Loss of Yurt in fly nephrocytes caused protein uptake and slit diaphragm defects. Transcriptomic and proteomic analysis of human EPB41L5 knockout podocytes demonstrated impaired mechanotransduction via the YAP/TAZ signaling pathway. Further analysis of specific inhibition of the YAP/TAZ-TEAD transcription factor complex by TEADi led to the identification of ARGHAP29 as an EPB41L5 and YAP/TAZ-dependently expressed podocyte RhoGAP. Knockdown of ARHGAP29 caused increased RhoA activation, defective lamellipodia formation, and increased maturation of integrin adhesion complexes, explaining similar phenotypes caused by loss of EPB41L5 and TEADi expression in podocytes. Detection of increased levels of ARHGAP29 in early disease stages of human glomerular disease implies a novel negative feedback loop for mechanotransductive RhoA-YAP/TAZ signaling in podocyte physiology and disease.


Asunto(s)
Podocitos , Humanos , Podocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Señalizadoras YAP , Mecanotransducción Celular , Integrinas/metabolismo , Proteómica , Proteína de Unión al GTP rhoA/metabolismo , Transducción de Señal , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de la Membrana/metabolismo
11.
Brain Struct Funct ; 228(3-4): 895-906, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36951990

RESUMEN

SLC35F1 is a member of the sugar-like carrier (SLC) superfamily that is expressed in the mammalian brain. Malfunction of SLC35F1 in humans is associated with neurodevelopmental disorders. To get insight into the possible roles of Slc35f1 in the brain, we generated Slc35f1-deficient mice. The Slc35f1-deficient mice are viable and survive into adulthood, which allowed examining adult Slc35f1-deficient mice on the anatomical as well as behavioral level. In humans, mutation in the SLC35F1 gene can induce a Rett syndrome-like phenotype accompanied by intellectual disability (Fede et al. Am J Med Genet A 185:2238-2240, 2021). The Slc35f1-deficient mice, however, display only a very mild phenotype and no obvious deficits in learning and memory as, e.g., monitored with the novel object recognition test or the Morris water maze test. Moreover, neuroanatomical parameters of neuronal plasticity (as dendritic spines and adult hippocampal neurogenesis) are also unaltered. Thus, Slc35f1-deficient mice display no major alterations that resemble a neurodevelopmental phenotype.


Asunto(s)
Encéfalo , Discapacidad Intelectual , Animales , Humanos , Ratones , Hipocampo , Discapacidad Intelectual/genética , Aprendizaje , Mamíferos , Aprendizaje por Laberinto/fisiología , Proteínas de Transporte de Membrana/genética , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Fenotipo
12.
Glomerular Dis ; 3(1): 19-28, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816428

RESUMEN

Background: For decades, knowledge about glomerular (patho)physiology has been tightly linked with advances in microscopic imaging technology. For example, the invention of electron microscopy was required to hypothesize about the mode of glomerular filtration barrier function. Summary: Super-resolution techniques, defined as fluorescence microscopy approaches that surpass the optical resolution limit of around 200 nm, have been made available to the scientific community. Several of these different techniques are currently in use in glomerular research. Using three-dimensional structured illumination microscopy, the exact morphology of the podocyte filtration slit can be morphometrically analyzed and quantitatively compared across samples originating from animal models or human biopsies. Key Messages: Several quantitative image analysis approaches and their potential influence on glomerular research and diagnostics are discussed. By improving not only optical resolution but also information content and turnaround time, super-resolution microscopy has the potential to expand the diagnosis of glomerular disease. Soon, these approaches could be introduced into glomerular disease diagnosis.

13.
Kidney Int ; 103(6): 1056-1062, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36750145

RESUMEN

Transient receptor potential canonical channels (TRPCs) are non-selective cationic channels that play a role in signal transduction, especially in G -protein-mediated signaling cascades. TRPC5 is expressed predominantly in the brain but also in the kidney. However, its role in kidney physiology and pathophysiology is controversial. Some studies have suggested that TRPC5 drives podocyte injury and proteinuria, particularly after small GTPase Rac1 activation to induce the trafficking of TRPC5 to the plasma membrane. Other studies using TRPC5 gain-of-function transgenic mice have questioned the pathogenic role of TRPC5 in podocytes. Here, we show that TRPC5 over-expression or inhibition does not ameliorate proteinuria induced by the expression of constitutively active Rac1 in podocytes. Additionally, single-cell patch-clamp studies did not detect functional TRPC5 channels in primary cultures of podocytes. Thus, we conclude that TRPC5 plays a role redundant to that of TRPC6 in podocytes and is unlikely to be a useful therapeutic target for podocytopathies.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Proteínas de Unión al GTP Monoméricas , Podocitos , Ratones , Animales , Podocitos/patología , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Proteínas de Unión al GTP Monoméricas/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , Proteinuria/patología , Ratones Transgénicos , Factores de Transcripción/metabolismo
14.
J Health Monit ; 8(4): 31-36, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38236527

RESUMEN

Background: Focal segmental glomerulosclerosis (FSGS) is a rare disease, or damage to the filtering units of the kidney, the glomeruli, about of which there is only limited knowledge and few treatment options. The STOP-FSGS consortium has set itself the goal to expand our knowledge of this disease and develop new treatment options. Project: Through intensive research and the use of state-of-the-art techniques such as super-resolution microscopy, AI-based imaging and single-cell research, the consortium aims to gain a deeper understanding of the mechanisms of FSGS. This will allow the disease to be diagnosed more accurately and thus enable targeted and more effective treatment of patients. Another focus is on the search for drugs that slow down or even cure the disease. Results: By establishing a rapid animal model, i.e. zebrafish larva, potential substances/drugs were identified that can alleviate FSGS. Moreover, super-resolution microscopy was used to precisely quantify the structural changes in the kidney by determining the so-called 'filtration slit density' (FSD) and to identify a marker allowing a personalised prognosis and assessment of the course of the disease. Conclusions: The results obtained help to better recognise the progression of FSGS and to optimally adapt treatment in order to improve the quality of life of the afflicted individuals and avoid renal replacement therapies.

15.
Stem Cell Res ; 73: 103224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38323759

RESUMEN

Chronic kidney disease is a major public health burden associated with a drastically reduced quality of living and life span that lacks suitable, individualized therapeutic strategies. Here we present a human induced pluripotent stem cell line (iPSC, UMGACBi001-A) reprogrammed from urine cells of an acute septic dialysis patient suffering from chronic kidney disease using non-integrating administration of RNAs. The generated iPSCs were positively characterized for typical morphology, pluripotency marker expression, directed differentiation potential, non-contamination, chromosomal consistency and donor identity. This iPSC-line can be a useful source for in vitro disease modelling and individualized therapeutic approaches.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Hipertensión , Células Madre Pluripotentes Inducidas , Insuficiencia Renal Crónica , Sepsis , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Nefropatías Diabéticas/metabolismo , Insuficiencia Renal Crónica/metabolismo , Diferenciación Celular , Hipertensión/metabolismo , Sepsis/metabolismo , Diabetes Mellitus/metabolismo
16.
J Clin Med ; 11(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012909

RESUMEN

Given the increasing prevalence of chronic kidney disease (CKD) and its impact on health care, it is important to better understand the multiple factors influencing health-related quality of life (HRQOL), particularly since they have been shown to affect CKD outcomes. Determinants of HRQOL as measured by the validated Kidney Disease Quality of Life questionnaire (KDQOL) and the Patient Health Questionnaire depression screener (PHQ-9) were assessed in a routine CKD patient sample, the Greifswald Approach to Individualized Medicine (GANI_MED) renal cohort (N = 160), including a wide range of self-reported data, sociodemographic and laboratory measures. Compared to the general population, CKD patients had lower HRQOL indices. Dialysis was associated with (1) low levels of physical functioning, (2) increased impairments by symptoms and problems, and (3) more effects and burden of kidney disease. HRQOL is seriously affected in CKD patients. However, impairments were found irrespective of eGFR decline and albuminuria. Rather, the comorbid conditions of depression and diabetes predicted a lower HRQOL (physical component score). Further studies should address whether recognizing and treating depression may not only improve HRQOL but also promote survival and lower hospitalization rates of CKD patients.

17.
Biomedicines ; 10(7)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35884965

RESUMEN

Background: Obesity, hyperglycemia and hypertension are critical risk factors for development of diabetic kidney disease (DKD). Emerging evidence suggests that glucagon-like peptide-1 receptor (GLP-1R) agonists improve cardiovascular and renal outcomes in type 2 diabetes patients. Here, we characterized the effect of the long-acting GLP-1R agonist semaglutide alone and in combination with an ACE inhibitor (lisinopril) in a model of hypertension-accelerated, advanced DKD facilitated by adeno-associated virus-mediated renin overexpression (ReninAAV) in uninephrectomized (UNx) female diabetic db/db mice. Methods: Female db/db mice received a single intravenous injection of ReninAAV 1 week prior to UNx. Six weeks post-nephrectomy, db/db UNx-ReninAAV mice were administered (q.d.) vehicle, semaglutide (30 nmol/kg, s.c.) or semaglutide (30 nmol/kg, s.c.) + lisinopril (30 mg/kg, p.o.) for 11 weeks. Endpoints included blood pressure, plasma/urine biochemistry, kidney histopathology and RNA sequencing. Results: Vehicle-dosed db/db UNx-ReninAAV mice developed hallmarks of DKD characterized by severe albuminuria and advanced glomerulosclerosis. Semaglutide robustly reduced hyperglycemia, hypertension and albuminuria concurrent with notable improvements in glomerulosclerosis severity, podocyte filtration slit density, urine/renal kidney injury molecule-1 (KIM-1) levels and gene expression markers of inflammation and fibrogenesis in db/db UNx-ReninAAV mice. Co-administration of lisinopril further ameliorated hypertension and glomerulosclerosis. Conclusions: Semaglutide improves disease hallmarks in the db/db UNx-ReninAAV mouse model of advanced DKD. Further benefits on renal outcomes were obtained by adjunctive antihypertensive standard of care. Collectively, our study supports the development of semaglutide for management of DKD.

18.
Front Cell Dev Biol ; 10: 838086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35652093

RESUMEN

Chronic kidney disease (CKD) is a major public health burden affecting more than 500 million people worldwide. Podocytopathies are the main cause for the majority of CKD cases due to pathogenic morphological as well as molecular biological alterations of postmitotic podocytes. Podocyte de-differentiation is associated with foot process effacement subsequently leading to proteinuria. Since currently no curative drugs are available, high throughput screening methods using a small number of animals are a promising and essential tool to identify potential drugs against CKD in the near future. Our study presents the implementation of the already established mouse GlomAssay as a semi-automated high-throughput screening method-shGlomAssay-allowing the analysis of several hundreds of FDA-verified compounds in combination with downstream pathway analysis like transcriptomic and proteomic analyses from the same samples, using a small number of animals. In an initial prescreening we have identified vitamin D3 and its analog calcipotriol to be protective on podocytes. Furthermore, by using RT-qPCR, Western blot, and RNA sequencing, we found that mRNA and protein expression of nephrin, the vitamin D receptor and specific podocyte markers were significantly up-regulated due to vitamin D3- and calcipotriol-treatment. In contrast, kidney injury markers were significantly down-regulated. Additionally, we found that vitamin D3 and calcipotriol have had neither influence on the expression of the miR-21 and miR-30a nor on miR-125a/b, a miRNA described to regulate the vitamin D receptor. In summary, we advanced the established mouse GlomAssay to a semi-automated high-throughput assay and combined it with downstream analysis techniques by using only a minimum number of animals. Hereby, we identified the vitamin D signaling pathway as podocyte protective and to be counteracting their de-differentiation.

19.
Clin Nephrol ; 98(1): 42-48, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35603689

RESUMEN

BACKGROUND: Most patients with chronic kidney disease (CKD) are old, comorbid, and subjected to polypharmacy. This study describes prevalence and predictors of potentially inappropriate medication (PIM) in CKD patients. MATERIALS AND METHODS: Medication plans of CKD patients of the "Greifswald Approach to Individualized Medicine" cross-sectional study (GANI_MED) were checked for PIM based on kidney function (PIM-K) and PIM for elderly patients (PIM-E). PIM-K were defined by prescription instructions of product labeling. PIM-E were defined by BEERS, -PRISCUS, and FORTA criteria. Predictors for PIM were identified through multiple stepwise regression. RESULTS: 375 patients were included (age: 67.9 ± 13.5 years; estimated glomerular filtration rate (eGFR): 23.3 ± 18.6 mL/min/1.73m2; prescriptions: 11.1 ± 4.7). 44.5% of all CKD patients had PIM-K, and 43.2 to 79.0% of all elderly patients had PIM-E. Polypharmacy and reduced eGFR were predictors for PIM. The risk for PIM-K was increased by 3.8 (95% confidence interval (CI): 1.5 - 9.6) with 10 or more prescriptions and by 8.7 (95% CI: 1.3 - 58.5) with an eGFR below 30 mL/min/1.73m2. On average, elderly patients with 10 or more prescriptions had 3.0 ± 1.7 PIM-E. CONCLUSION: Polypharmacy, PIM-K, and PIM-E affect many CKD patients and can lead to adverse events. Deprescribing and targeted prescribing may improve the outcome of CKD patients and elderly patients.


Asunto(s)
Lista de Medicamentos Potencialmente Inapropiados , Insuficiencia Renal Crónica , Anciano , Anciano de 80 o más Años , Estudios Transversales , Humanos , Prescripción Inadecuada , Persona de Mediana Edad , Insuficiencia Renal Crónica/etiología , Factores de Riesgo
20.
J Cell Mol Med ; 26(12): 3513-3526, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35593050

RESUMEN

Increasing the information depth of single kidney biopsies can improve diagnostic precision, personalized medicine and accelerate basic kidney research. Until now, information on mRNA abundance and morphologic analysis has been obtained from different samples, missing out on the spatial context and single-cell correlation of findings. Herein, we present scoMorphoFISH, a modular toolbox to obtain spatial single-cell single-mRNA expression data from routinely generated kidney biopsies. Deep learning was used to virtually dissect tissue sections in tissue compartments and cell types to which single-cell expression data were assigned. Furthermore, we show correlative and spatial single-cell expression quantification with super-resolved podocyte foot process morphometry. In contrast to bulk analysis methods, this approach will help to identify local transcription changes even in less frequent kidney cell types on a spatial single-cell level with single-mRNA resolution. Using this method, we demonstrate that ACE2 can be locally upregulated in podocytes upon injury. In a patient suffering from COVID-19-associated collapsing FSGS, ACE2 expression levels were correlated with intracellular SARS-CoV-2 abundance. As this method performs well with standard formalin-fixed paraffin-embedded samples and we provide pretrained deep learning networks embedded in a comprehensive image analysis workflow, this method can be applied immediately in a variety of settings.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Enzima Convertidora de Angiotensina 2 , COVID-19/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...