Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(12): 5526-5530, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32131597

RESUMEN

Planar, terpyridine-based metal complexes with the Sierpinski triangular motif and alkylated corners undergo a second self-assembly event to give megastructural Sierpinski pyramids; assembly is driven by the facile lipophilic-lipophilic association of the alkyl moieties and complementary perfect fit of the triangular building blocks. Confirmation of the 3D, pyramidal structures was verified and supported by a combination of TEM, AFM, and multiscale simulation techniques.

2.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8717, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31894612

RESUMEN

RATIONALE: Coordinatively driven self-assembly of transition metal ions and bidentate ligands gives rise to organometallic complexes that usually contain superimposed isobars, isomers, and conformers. In this study, the double dispersion ability of ion mobility mass spectrometry (IM-MS) was used to provide a comprehensive structural characterization of the self-assembled supramolecular complexes by their mass and charge, revealed by the MS event, and their shape and collision cross-section (Ω), revealed by the IM event. METHODS: Self-assembled complexes were synthesized by reacting a bis(terpyridine) ligand exhibiting a 60o dihedral angle between the two ligating terpyridine sites (T) with divalent Zn, Ni, Cd, or Fe. The products were isolated as (Metal2+ [T])n (PF6 )2n salts and analyzed using IM-MS after electrospray ionization (ESI) which produced several charge states from each n-mer, depending on the number of PF6 - anions lost upon ESI. Experimental Ω data, derived using IM-MS, and computational Ω predictions were used to elucidate the size and architecture of the complexes. RESULTS: Only macrocyclic dimers, trimers, and tetramers were observed with Cd2+ , whereas Zn2+ formed the same plus hexameric complexes. These two metals led to the simplest product distributions and no linear isomers. In sharp contrast, Ni2+ and Fe2+ formed all possible ring sizes from dimer to hexamer as well as various linear isomers. The experimental and theoretical Ω data indicated rather planar macrocyclic geometries for the dimers and trimers, twisted 3D architectures for the larger rings, and substantially larger sizes with spiral conformation for the linear congeners. Adding PF6 - to the same complex was found to mainly cause size contraction due to new stabilizing anion-cation interactions. CONCLUSIONS: Complete structural identification could be accomplished using ESI-IM-MS. Our results affirm that self-assembly with Cd2+ and Zn2+ proceeds through reversible equilibria that generate the thermodynamically most stable structures, encompassing exclusively macrocyclic architectures that readily accommodate the 60o ligand used. In contrast, complexation with Ni2+ and Fe2+ , which form stronger coordinative bonds, proceeds through kinetic control, leading to more complex mixtures and kinetically trapped less stable architectures, such as macrocyclic pentamers and linear isomers.

3.
Biomaterials ; 218: 119335, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31302351

RESUMEN

Neuroregeneration following peripheral nerve injury is largely mediated by Schwann cells (SC), the principal glial cell that supports neurons in the peripheral nervous system. Axonal regeneration in vivo is limited by the extent of SC migration into the gap between the proximal and distal nerve, however, little is known regarding the principal driving forces for SC migration. Engineered microenvironments, such as molecular and protein gradients, play a role in the migration of many cell types, including cancer cells and fibroblasts. However, haptotactic strategies have not been applied widely to SC. Herein, a series of tethered laminin-derived peptides were analyzed for their influence on SC adhesion, proliferation, and alignment. Concentration gradient substrates were fabricated using a controlled vapor deposition method, followed by covalent peptide attachment via a thiol-ene reaction, and characterized by X-ray photoelectron spectroscopy (XPS) and MALDI-MS imaging. While tethered RGD peptides supported SC adhesion and proliferation, concentration gradients of RGD had little influence on biased SC directional migration. In contrast, YIGSR promoted less SC attachment than RGD, yet YIGSR peptide gradients directed migration with a strong bias to the concentration profile. With YIGSR peptide, overall speed increased with the steepness of the peptide concentration profile. YIGSR gradients had no haptotactic effect on rat dermal fibroblast migration, in contrast to fibroblast migration on RGD gradients. The response of SC to these tethered peptide gradients will guide the development of translationally relevant constructs designed to facilitate endogenous SC infiltration into defects for nerve regeneration.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Laminina/química , Péptidos/química , Péptidos/farmacología , Células de Schwann/citología , Células de Schwann/efectos de los fármacos , Actinas/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Femenino , Espectroscopía de Fotoelectrones , Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Macromol Rapid Commun ; 40(6): e1800667, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30507049

RESUMEN

Ion mobility-mass spectrometry (IM-MS) allows the separation of isomeric and isobaric species on the basis of their size, shape, and charge. The fast separation timescale (ms) and high sensitivity of these measurements make IM-MS an ideally suitable method for monitoring changes in macromolecular structure, such as those occurring in interconverting terpyridine-based metallosupramolecular self-assemblies. IM-MS is used to verify the elemental composition (size) and architecture (shape) of the self-assembled products. Additionally, this article demonstrates its applicability to the elucidation of concentration-driven association-dissociation (fusion-fission) equilibria between isobaric structures. IM-MS enables both quantitative separation and identification of the interconverting complexes as well as derivation of the corresponding equilibrium constants (i.e., thermodynamic information) from extracted IM-MS abundance data.


Asunto(s)
Compuestos Organometálicos/síntesis química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/aislamiento & purificación , Espectrometría de Masas , Estructura Molecular , Compuestos Organometálicos/química , Compuestos Organometálicos/aislamiento & purificación , Tamaño de la Partícula , Propiedades de Superficie
5.
Anal Chem ; 90(22): 13427-13433, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30346135

RESUMEN

Surface layer matrix-assisted laser desorption ionization mass spectrometry imaging (SL-MALDI-MSI) is a powerful new surface sensitive imaging technique to establish surface component localization of multicomponent polymer materials. This study demonstrates the ability of SL-MALDI-MSI to image defects from foreign materials, material absence, mechanical scribing, and solvent perturbation at the surface of low-molecular-weight poly(methyl methacrylate) and polystyrene thin films. The surface specificity of the SL-MALDI-MSI technique is validated by imaging polystyrene on poly(methyl methacrylate) bilayer films; only polystyrene ions are detected from the surface of the unperturbed polystyrene layer. A key process enabling SL-MALDI-MSI is the solvent-free sublimation of matrix and salt uniformly on the sample's surface.

6.
Dalton Trans ; 47(22): 7528-7533, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29790541

RESUMEN

Hierarchical construction of a highly ordered supramolecular array has been, in general, a challenge due to the complexation of building blocks and the hard-to-control weak interactions. Herein, we present a type of well-ordered nanoribbon, which was self-assembled via shape complimentary and hydrophobic effects from the bowl-shaped supramolecular components, which were synthesized by combining designer terpyridine-based monomers and two different metal ions (Ru2+, Zn2+). Interestingly, switching counter ions or changing monomer concentrations, a transformation between a uniform nanosphere and nanoribbon occurred. This opens a door to fabricate readily tailorable, large-scale, supramacromolecular materials.

7.
Dalton Trans ; 47(40): 14189-14194, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29363693

RESUMEN

The quantitative, single step, self-assembly of a shape-persistent, three-dimensional C3v-symmetric, triptycene-based tris-terpyridinyl ligand initially gives a platonic-based cubic architecture, which was unequivocally characterized by 1D and 2D NMR spectroscopy, mass spectrometry, and single crystal X-ray structural analysis. The unique metal-ligand binding properties of the Cd2+ analogue of this construct give rise to a concentration-dependent dynamic equilibrium between cube, prism, and tetrahedron-shaped architectures. Dilution transforms this cube into two identical tetrahedra through a stable prism-shaped intermediate; increasing the concentration reverses the process.

8.
ACS Macro Lett ; 7(4): 487-492, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35619347

RESUMEN

The preference for a shorter chain component at a polymer blend surface impacts surface properties key to application-specific performance. While such segregation is known for blends containing low molecular weight additives or systems with large polydispersity, it has not been reported for anionically polymerized polymers that are viewed, in practice, as monodisperse. Observations with surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-ToF-MS), which distinguishes surface species without labeling and provides the entire molecular weight distribution, demonstrate that entropically driven surface enrichment of shorter chains occurs even in low polydispersity materials. For 6 kDa polystyrene the number-average molecular weight (Mn) at the surface is ca. 300 Da (5%) lower than that in the bulk, and for 7 kDa poly(methyl methacryalate) the shift is ca. 500 Da. These observations are in qualitative agreement with results from a mean-field theory that considers a homopolymer melt with a molecular-weight distribution matched to the experiments.

9.
ACS Macro Lett ; 7(7): 795-800, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35650770

RESUMEN

The surface of a blend of 6 kDa polystyrene and 6 kDa polystyrene functionalized with hydroxymethyl ends not only is depleted of the higher energy end groups but also is depleted of any segments belonging to the functionalized chains. This is demonstrated using the emerging technique of surface layer matrix-assisted laser desorption ionization time-of-flight mass spectrometry (SL-MALDI-ToF-MS), which detects entire chains that have any repeat unit at the outer surface, and requires no labeling. Detecting entire chains provides information about the relationship of chain functionalization to surface segregation behavior of entire chains. That the surface is depleted of interior segments of functionalized chains as well as of the ends is remarkable, since the functionality at the single chain end involves less than 0.5 wt % of the functionalized polymer chain.

10.
J Am Chem Soc ; 139(44): 15652-15655, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29077397

RESUMEN

Synthesis of giant unimolecular dendrimers is challenging due, in part, to difficulties encountered at higher generations, in both convergent and divergent protocols because of the multistep construction/purification process. Herein, we report a hybrid synthetic procedure in which the core is constructed last. This quantitative assembly generated a metallodendrimer that is supercharged (120+), large (11.3 nm diameter), and its core was previously established. The series of complexes has been unequivocally characterized by NMR, ESI-IM-MS, and TEM techniques.

11.
Chem Commun (Camb) ; 53(57): 8038-8041, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28671208

RESUMEN

A novel terpyridine-based, trapezoidal architecture was synthesized by a coordination-driven multicomponent assembly and features three different tpy-M2+-tpy bonds (M2+ = Ru2+, Fe2+, and Zn2+) in the macrocyclic ring. This trimetallic macrocycle introduces the construction of polymetallosupramolecular assemblies possessing multiple, differing metal centers in an ordered, predetermined pattern. Characterization was accomplished by NMR spectroscopy, mass spectrometry, and UV-Vis spectroscopy.

12.
J Am Chem Soc ; 139(8): 3012-3020, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28165736

RESUMEN

A three-dimensional, highly symmetric sphere-like nanocage was synthesized using a terpyridine (tpy)-based, flexible tris-dentate ligand and characterized by single crystal X-ray analysis. To introduce more rigidity, one of the tpy units of the tris-dentate ligand was preblocked by stable connectivity to form the corresponding Ru2+-dimer. The complexation between Ru2+-dimer and Fe2+ demonstrates an unexpected temperature-dependent assembly between two irreversible isomeric 3D nanocages. Investigation of the coordination process and structural configurations of the metal-ligand framework, affected by the introduction of rigidity and in the presence of external stimuli (temperature), is reported.

13.
J Am Chem Soc ; 138(38): 12344-7, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27610709

RESUMEN

Metallomacromolecular architectural conversion is expanded by the characterization of three different structures. A quantitative, single-step, self-assembly of a shape-persistent monomer, containing a flexible crown ether moiety, gives an initial Archimedean-based cuboctahedron that has been unequivocally characterized by 1D and 2D NMR spectroscopy, mass spectrometry, and collision cross section analysis. Both dilution and exchange of counterions, transforms this cuboctahedron into two identical octahedrons, which upon further dilution convert into four, superposed, bistrianglar complexes; increasing the concentration reverses the process. Ion binding studies using the cuboctahedral cage were undertaken.

14.
Anal Chim Acta ; 932: 1-21, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27286765

RESUMEN

This review covers the application of mass spectrometry (MS) and its hyphenated techniques to synthetic polymers of varying architectural complexities. The synthetic polymers are discussed as according to their architectural complexity from linear homopolymers and copolymers to stars, dendrimers, cyclic copolymers and other polymers. MS and tandem MS (MS/MS) has been extensively used for the analysis of synthetic polymers. However, the increase in structural or architectural complexity can result in analytical challenges that MS or MS/MS cannot overcome alone. Hyphenation to MS with different chromatographic techniques (2D × LC, SEC, HPLC etc.), utilization of other ionization methods (APCI, DESI etc.) and various mass analyzers (FT-ICR, quadrupole, time-of-flight, ion trap etc.) are applied to overcome these challenges and achieve more detailed structural characterizations of complex polymeric systems. In addition, computational methods (software: MassChrom2D, COCONUT, 2D maps etc.) have also reached polymer science to facilitate and accelerate data interpretation. Developments in technology and the comprehension of different polymer classes with diverse architectures have significantly improved, which allow for smart polymer designs to be examined and advanced. We present specific examples covering diverse analytical aspects as well as forthcoming prospects in polymer science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA