Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Gut ; 54(1): 142-51, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15591520

RESUMEN

BACKGROUND: Hepatic stellate cells (HSCs) are a major fibrogenic cell type that contributes to collagen accumulation during chronic liver disease. With increasing interest in developing antifibrotic therapies, there is a need for cell lines that preserve the in vivo phenotype of human HSCs to elucidate pathways of human hepatic fibrosis. We established and characterised two human HSC cell lines termed LX-1 and LX-2, and compared their features with those of primary human stellate cells. METHODS AND RESULTS: LX-1 and LX-2 were generated by either SV40 T antigen immortalisation (LX-1) or spontaneous immortalisation in low serum conditions (LX-2). Both lines express alpha smooth muscle actin, vimentin, and glial fibrillary acid protein, as visualised by immunocytochemistry. Similar to primary HSCs, both lines express key receptors regulating hepatic fibrosis, including platelet derived growth factor receptor beta (betaPDGF-R), obese receptor long form (Ob-RL), and discoidin domain receptor 2 (DDR2), and also proteins involved in matrix remodelling; matrix metalloproteinase (MMP)-2, tissue inhibitor of matrix metalloproteinase (TIMP)-2, and MT1-MMP, as determined by western analyses. LX-2 have reduced expression of TIMP-1. LX-2, but not LX-1, proliferate in response to PDGF. Both lines express mRNAs for alpha1(I) procollagen and HSP47. Transforming growth factor beta1 stimulation increased their alpha1(I) procollagen mRNA expression, as determined by quantitative reverse transcription-polymerase chain reaction. LX-2, but not LX-1, cells are highly transfectable. Both lines had a retinoid phenotype typical of stellate cells. Microarray analyses showed strong similarity in gene expression between primary HSCs and either LX-1 (98.4%) or LX-2 (98.7%), with expression of multiple neuronal genes. CONCLUSIONS: LX-1 and LX-2 human HSC lines provide valuable new tools in the study of liver disease. Both lines retain key features of HSCs. Two unique advantages of LX-2 are their viability in serum free media and high transfectability.


Asunto(s)
Adipocitos/citología , Línea Celular/metabolismo , Cirrosis Hepática/patología , Hígado/citología , Colágeno Tipo I/metabolismo , Medios de Cultivo , Medio de Cultivo Libre de Suero , Expresión Génica , Humanos , Proteínas de Filamentos Intermediarios/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Transfección , Vitamina A/metabolismo
2.
Science ; 294(5551): 2563-6, 2001 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-11752579

RESUMEN

Kruppel-like factor 6 (KLF6) is a zinc finger transcription factor of unknown function. Here, we show that the KLF6 gene is mutated in a subset of human prostate cancer. Loss-of-heterozygosity analysis revealed that one KLF6 allele is deleted in 77% (17 of 22) of primary prostate tumors. Sequence analysis of the retained KLF6 allele revealed mutations in 71% of these tumors. Functional studies confirm that whereas wild-type KLF6 up-regulates p21 (WAF1/CIP1) in a p53-independent manner and significantly reduces cell proliferation, tumor-derived KLF6 mutants do not. Our data suggest that KLF6 is a tumor suppressor gene involved in human prostate cancer.


Asunto(s)
Genes Supresores de Tumor , Mutación , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas , Transactivadores/genética , Alelos , Sustitución de Aminoácidos , Animales , División Celular , Línea Celular , Mapeo Cromosómico , Cromosomas Humanos Par 10/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/genética , Ciclinas/metabolismo , Heterogeneidad Genética , Humanos , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Pérdida de Heterocigocidad , Masculino , Ratones , Repeticiones de Microsatélite , Mutación Missense , Antígeno Nuclear de Célula en Proliferación/metabolismo , Regiones Promotoras Genéticas , Transactivadores/química , Transactivadores/fisiología , Activación Transcripcional , Células Tumorales Cultivadas , Regulación hacia Arriba , Dedos de Zinc
3.
J Clin Invest ; 108(9): 1369-78, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11696582

RESUMEN

Type I collagen provokes activation of hepatic stellate cells during liver injury through mechanisms that have been unclear. Here, we tested the role of the discoidin domain tyrosine kinase receptor 2 (DDR2), which signals in response to type I collagen, in this pathway. DDR2 mRNA and protein are induced in stellate cells activated by primary culture or in vivo during liver injury. The receptor becomes tyrosine phosphorylated in response to either endogenous or exogenous type I collagen, whereas its expression is downregulated during cellular quiescence induced by growth on Matrigel. We developed stellate cell lines stably overexpressing either wild-type DDR2, a constitutively active chimeric DDR2 receptor (Fc-DDR2), a truncated receptor expressing the extracellular domain, or a kinase-dead DDR2 Cells overexpressing DDR2 showed enhanced proliferation and invasion through Matrigel, activities that were directly related to increased expression of active matrix metalloproteinase 2 (MMP-2). These data show that DDR2 is induced during stellate cell activation and implicate the phosphorylated receptor as a mediator of MMP-2 release and growth stimulation in response to type I collagen. Moreover, type I collagen-dependent upregulation of DDR2 expression establishes a positive feedback loop in activated stellate cells, leading to further proliferation and enhanced invasive activity.


Asunto(s)
Hígado/citología , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas Tirosina Quinasas Receptoras , Receptores Mitogénicos/metabolismo , Receptores Mitogénicos/fisiología , Animales , Membrana Basal/metabolismo , Northern Blotting , Western Blotting , División Celular , Células Cultivadas , Colágeno/biosíntesis , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , ADN Complementario/metabolismo , Receptores con Dominio Discoidina , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Matriz Extracelular/metabolismo , Macrófagos del Hígado , Hígado/lesiones , Hígado/metabolismo , Mutación , Fosforilación , Unión Proteica , Ratas , Ratas Sprague-Dawley , Retroviridae/genética , Factores de Tiempo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
4.
Semin Liver Dis ; 21(3): 385-95, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11586467

RESUMEN

Modulation of gene expression through altered transcription regulates stellate cell behavior in normal liver and following hepatic injury. Transcription factors are generally classified according to conserved motifs within either the activation- or DNA- binding domains of the molecules. Transcriptional activity in stellate cells represents a delicate fine tuning of multiple inputs. Activities of these transcription factors are modified by their intracellular localization, rate and pathway of degradation, oligomerization, and interactions with heterologous factors and chromatin, as well as by posttranslational modifications, including phosphorylation, glycosylation, and acetylation. General paradigms of transcriptional control are increasingly being validated in hepatic stellate cells, particularly involving the transcription factors CCAAT/enhancer-binding proteins, c-myb, CREB, nuclear factor kappaB, peroxisome proliferator-activated receptor, and Kruppel-like zinc finger factors. Although there are no simple rules that govern mechanisms of transcriptional regulation in stellate cells, continued advances will yield new insights into their role in normal liver homeostasis and in the response to injury.


Asunto(s)
Regulación de la Expresión Génica , Cirrosis Hepática/fisiopatología , Hígado/citología , Hígado/patología , Factores de Transcripción/farmacología , Transcripción Genética/fisiología , Proteínas de Unión al ADN/farmacología , Homeostasis , Humanos , Procesamiento Proteico-Postraduccional
5.
Am J Physiol Gastrointest Liver Physiol ; 279(1): G7-G11, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10898741

RESUMEN

Hepatic stellate cell activation is a complex process. Paradoxes and controversies include the origin(s) of hepatic stellate cells, the regulation of membrane receptor signaling and transcription, and the fate of the cells once liver injury resolves. Major themes have emerged, including the dominance of autocrine signaling and the identification of counterregulatory stimuli that oppose key features of activated cells. Advances in analytical methods including proteomics and gene array, coupled with powerful bioinformatics, promise to revolutionize how we view cellular responses. Our understanding of stellate cell activation is likely to benefit from these advances, unearthing modes of regulating cellular behavior that are not even conceivable on the basis of current paradigms.


Asunto(s)
Cirrosis Hepática Experimental/patología , Cirrosis Hepática Experimental/fisiopatología , Hígado/citología , Transducción de Señal/fisiología , Animales , Hígado/fisiología
6.
J Biol Chem ; 274(41): 28887-92, 1999 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-10506132

RESUMEN

Carboxypeptidase D (CPD) contains three domains with homology to other metallocarboxypeptidases. To further characterize the various domains, we constructed a series of point mutants with a critical active site Glu of duck CPD converted to Gln. The proteins were expressed in the baculovirus system, purified to homogeneity, and characterized. Point mutations within both the first and second domains eliminated enzyme activity, indicating that the third domain is inactive toward dansyl-Phe-Ala-Arg. CPD removed only the C-terminal Lys or Arg from peptides, with the first domain more efficient toward Arg and the second domain more efficient toward Lys. Peptides containing Pro in the penultimate position were poorly cleaved by either domain. Cleavage of a peptide with Ala in the penultimate position was most efficient, with the relative order Ala >/= Met > Ser, Phe > Tyr > Trp > Thr >/= Gln, Asp, Leu, Gly >> Pro for CPD with both domains active. There were only minor differences between the first and the second domains regarding the influence of the penultimate amino acid. The first domain was optimally active at pH 6.3-7.5, whereas the second domain was optimally active at pH 5. 0-6.5. Thus, the first and second carboxypeptidase domains have complementary enzyme activities. Furthermore, the finding that CPD with both domains active shows a broad activity to a wide range of substrates is consistent with a role for this enzyme in the processing of many proteins that transit the secretory pathway.


Asunto(s)
Carboxipeptidasas/química , Glicoproteínas de Membrana/química , Proteínas , Animales , Baculoviridae/genética , Sitios de Unión , Carboxipeptidasas/genética , Compuestos de Dansilo/metabolismo , Patos , Inhibidores Enzimáticos/farmacología , Concentración de Iones de Hidrógeno , Cinética , Glicoproteínas de Membrana/genética , Péptidos/metabolismo , Mutación Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato
7.
J Biol Chem ; 274(21): 14759-67, 1999 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-10329672

RESUMEN

Carboxypeptidase D (CPD) is a recently discovered metallocarboxypeptidase that is predominantly located in the trans-Golgi network (TGN), and also cycles between the cell surface and the TGN. In the present study, the intracellular distribution of CPD was examined in AtT-20 cells, a mouse anterior pituitary-derived corticotroph. CPD-containing compartments were isolated using antibodies to the CPD cytosolic tail. The immunopurified vesicles contained TGN proteins (TGN38, furin, syntaxin 6) but not lysosomal or plasma membrane proteins. The CPD-containing vesicles also contained neuropeptide-processing enzymes and adrenocorticotropic hormone, a product of proopiomelanocortin proteolysis. Electron microscopic analysis revealed that CPD is present within the TGN and immature secretory granules but is virtually absent from mature granules, suggesting that CPD is actively removed from the regulated pathway during the process of granule maturation. A second major finding of the present study is that a soluble truncated form of CPD is secreted mainly via the constitutive pathway in AtT-20 cells, indicating that the lumenal domain does not contain signals for the sorting of CPD to mature secretory granules. Taken together, these data are consistent with the proposal that CPD participates in the processing of proteins within the TGN and immature secretory vesicles.


Asunto(s)
Carboxipeptidasas/metabolismo , Glicoproteínas de Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas , Animales , Carboxipeptidasas/análisis , Células Cultivadas , Glicoproteínas de Membrana/análisis , Ratones , Adenohipófisis/citología
8.
Mol Biol Cell ; 10(1): 35-46, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9880325

RESUMEN

Gp180, a duck protein that was proposed to be a cell surface receptor for duck hepatitis B virus, is the homolog of metallocarboxypeptidase D, a mammalian protein thought to function in the trans-Golgi network (TGN) in the processing of proteins that transit the secretory pathway. Both gp180 and mammalian metallocarboxypeptidase D are type I integral membrane proteins that contain a 58-residue cytosolic C-terminal tail that is highly conserved between duck and rat. To investigate the regions of the gp180 tail involved with TGN retention and intracellular trafficking, gp180 and various deletion and point mutations were expressed in the AtT-20 mouse pituitary corticotroph cell line. Full length gp180 is enriched in the TGN and also cycles to the cell surface. Truncation of the C-terminal 56 residues of the cytosolic tail eliminates the enrichment in the TGN and the retrieval from the cell surface. Truncation of 12-43 residues of the tail reduced retention in the TGN and greatly accelerated the turnover of the protein. In contrast, deletion of the C-terminal 45 residues, which truncates a potential YxxL-like sequence (FxxL), reduced the protein turnover and caused accumulation of the protein on the cell surface. A point mutation of the FxxL sequence to AxxL slowed internalization, showing that this element is important for retrieval from the cell surface. Mutation of a pair of casein kinase II sites within an acidic cluster showed that they are also important for trafficking. The present study demonstrates that multiple sequence elements within the cytoplasmic tail of gp180 participate in TGN localization.


Asunto(s)
Carboxipeptidasas/química , Carboxipeptidasas/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión/genética , Transporte Biológico Activo , Carboxipeptidasas/genética , Línea Celular , Membrana Celular/enzimología , Cicloheximida/farmacología , Citoplasma/enzimología , ADN Recombinante/genética , Patos , Aparato de Golgi/enzimología , Virus de la Hepatitis B del Pato/patogenicidad , Lisosomas/enzimología , Glicoproteínas de Membrana/genética , Ratones , Datos de Secuencia Molecular , Mutación Puntual , Ratas , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Eliminación de Secuencia , Transfección
9.
J Biol Chem ; 273(14): 8382-8, 1998 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-9525948

RESUMEN

Duck gp180 was previously identified by its ability to bind to the preS envelope protein of duck hepatitis B virus particles (Kuroki, K. , Cheung, R., Marion, P. L., and Ganem, D. (1994) J. Virol. 68, 2091-2096). Cloning and sequencing of gp180 cDNA revealed that it is a polyprotein with three carboxypeptidase-like domains (Kuroki, K., Eng, F., Ishikawa, T., Turck, C., Harada, F., and Ganem, D. (1995) J. Biol. Chem. 270, 15022-15028). To evaluate enzymatic properties of this protein, a soluble 170-kDa form of the protein (gp170) lacking the C-terminal transmembrane domain and cytoplasmic tail was expressed in a baculovirus system. The purified 170-kDa protein cleaved 5-dimethylaminonaphthalene-1-sulfonyl (dansyl)-Phe-Ala-Arg with a pH optimum of 5.5-6.5. With this substrate at pH 5.5, the 170-kDa protein displayed a Km of 12 microM and a Kcat of 57 s-1. Dansyl-Pro-Ala-Arg and dansyl-Phe-Phe-Arg were cleaved with Km values of 17 and 21 microM, and Kcat values of 57 and 17 s-1, respectively. Constructs containing only the first or second carboxypeptidase domains also showed enzymatic activity. The effects of inhibitors and ions on enzyme activity of gp170 were generally similar to the effects of these compounds on purified bovine carboxypeptidase D. To evaluate the regions within gp180 necessary for binding preS, a series of deletion mutants were expressed in the 293T human kidney cell line. Deletions of the first and second domains, leaving the third domain intact, eliminated carboxypeptidase activity but retained preS binding. Deletion of the third domain eliminated preS binding but not carboxypeptidase activity. These results indicate that the third domain is responsible for preS binding, and this binding does not require carboxypeptidase activity.


Asunto(s)
Carboxipeptidasas/metabolismo , Virus de la Hepatitis B del Pato/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas , Animales , Sitios de Unión , Bovinos , Activación Enzimática , Humanos , Concentración de Iones de Hidrógeno , Unión Proteica
10.
Cell ; 65(5): 797-804, 1991 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-2040015

RESUMEN

In S. cerevisiae, ribosomal protein L32 regulates the splicing of the transcript of its own gene, RPL32. We have identified an RNA structure within the transcript that is responsible for this regulation. Initial deletions limited essential sequences to the 5' exon and the first few nucleotides of the intron. To take advantage of phylogenetic comparison of RNA structures, RPL32 was cloned from the closely related species, Kluyveromyces lactis. The splicing of its transcript is similarly regulated. Sequences conserved between the S. cerevisiae and K. lactis transcripts suggested a structure involving base pairing of a region encompassing the 5' splice site with another near the 5' end of the transcript. Analysis of numerous site-directed mutations supports this structure. We infer that stabilization of this structure by L32 inhibits splicing by precluding the interaction of U1 RNA with the 5' splice site.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Empalme del ARN , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Northern Blotting , Quimera , Deleción Cromosómica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Sondas de Oligonucleótidos , Proteínas Ribosómicas/fisiología , Transcripción Genética
11.
Mol Cell Biol ; 9(11): 5045-54, 1989 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2481228

RESUMEN

The SNF4 gene is required for expression of glucose-repressible genes in response to glucose deprivation in Saccharomyces cerevisiae. Previous evidence suggested that SNF4 is functionally related to SNF1, another essential gene in this global regulatory system that encodes a protein kinase. Increased SNF1 gene dosage partially compensates for a mutation in SNF4, and the SNF4 function is required for maximal SNF1 protein kinase activity in vitro. We have cloned SNF4 and identified its 1.2-kilobase RNA, which is not regulated by glucose repression. A 36-kilodalton SNF4 protein is predicted from the nucleotide sequence. Disruption of the chromosomal SNF4 locus revealed that the requirement for SNF4 function is less stringent at low temperature (23 degrees C). A bifunctional SNF4-lacZ gene fusion that includes almost the entire SNF4 coding sequence was constructed. The fusion protein was shown by immunofluorescence microscopy to be distributed throughout the cell, with partial localization to the nucleus. The SNF4-beta-galactosidase protein coimmunoprecipitated with the SNF1 protein kinase, thus providing evidence for the physical association of the two proteins.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Quinasas Dependientes de Calcio-Calmodulina , Clonación Molecular , Técnica del Anticuerpo Fluorescente , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genotipo , Glucosa/metabolismo , Glicósido Hidrolasas/metabolismo , Datos de Secuencia Molecular , Pruebas de Precipitina , ARN/genética , Proteínas Recombinantes de Fusión/análisis , Mapeo Restrictivo , Temperatura , beta-Fructofuranosidasa
12.
Mol Cell Biol ; 5(11): 2894-902, 1985 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-3018485

RESUMEN

The SUC gene family of Saccharomyces contains six structural genes for invertase (SUC1 through SUC5 and SUC7) which are located on different chromosomes. Most yeast strains do not carry all six SUC genes and instead carry natural negative (suc0) alleles at some or all SUC loci. We determined the physical structures of SUC and suc0 loci. Except for SUC2, which is an unusual member of the family, all of the SUC genes are located very close to telomeres and are flanked by homologous sequences. On the centromere-proximal side of the gene, the conserved region contains X sequences, which are sequences found adjacent to telomeres (C. S. M. Chan and B.-K. Tye, Cell 33:563-573, 1983). On the other side of the gene, the homology includes about 4 kilobases of flanking sequence and then extends into a Y' element, which is an element often found distal to the X sequence at telomeres (Chan and Tye, Cell 33:563-573, 1983). Thus, these SUC genes and flanking sequences are embedded in telomere-adjacent sequences. Chromosomes carrying suc0 alleles (except suc20) lack SUC structural genes and portions of the conserved flanking sequences. The results indicate that the dispersal of SUC genes to different chromosomes occurred by rearrangements of chromosome telomeres.


Asunto(s)
Evolución Biológica , Genes Fúngicos , Genes , Glicósido Hidrolasas/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Cromosomas/ultraestructura , Clonación Molecular , Enzimas de Restricción del ADN , Genotipo , Plásmidos , Saccharomyces cerevisiae/enzimología , Sacarosa/metabolismo , beta-Fructofuranosidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA