Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta amaz ; 52(1): 29-37, 2022. mapas, graf, tab, ilus
Artículo en Inglés | VETINDEX | ID: biblio-1437364

RESUMEN

We explored a 320-km transect in the Tumucumaque mountain range along the border between southern French Guiana and Brazil, sampling all trees and lianas with DBH ≥ 10 cm in seven 25 x 25-m plots installed near seven boundary milestones. We isolated DNA from cambium tissue and sequenced two DNA barcodes (rbcLa and matK) to aid in species identification. We also collected fertile herbarium specimens from other species (trees/shrubs/herbs) inside and outside the plots. The selected DNA barcodes were useful at the family level but failed to identify specimens at the species level. Based on DNA barcoding identification, the most abundant families in the plots were Burseraceae, Fabaceae, Meliaceae, Moraceae, Myristicaceae and Sapotaceae. One third of the images of sampled plants posted on the iNaturalist website were identified by the community to species level. New approaches, including the sequencing of the ITS region and fast evolving DNA plastid regions, remain to be tested for their utility in the identification of specimens at lower taxonomic levels in floristic inventories in the Amazon region.(AU)


Um transecto de 320 km foi explorado na Serra do Tumucumaque, ao longo da fronteira entre o sul da Guiana Francesa e o Brasil por meio da amostragem de todas as árvores e lianas com DAP ≥ 10 cm em sete parcelas de 25 x 25 m instaladas perto de sete marcos fronteiriços. Isolamos DNA de tecido cambial e sequenciamos dois códigos de barra de DNA (rbcLa e matK) para auxiliar na identificação das espécies. Também coletamos espécimes de herbário férteis de outras espécies (árvores/arbustos/ervas) dentro e fora das parcelas. Os códigos de barra de DNA selecionados foram úteis em nível de família, mas não conseguiram identificar espécimes em nível de espécie. Com base na identificação de DNA barcoding, as famílias mais abundantes nas parcelas foram Burseraceae, Fabaceae, Meliaceae, Moraceae, Myristicaceae e Sapotaceae. Um terço das imagens de plantas amostradas postadas no website iNaturalist foram identificadas em nível de espécie. Novas abordagens, incluindo o sequenciamento da região ITS e regiões de DNA plastidial de rápida evolução, ainda precisam ser testadas quanto à sua utilidade na identificação de espécimes até níveis taxonômicos mais baixos em inventários florísticos na região amazônica.(AU)


Asunto(s)
Árboles/genética , Ecosistema Amazónico , Brasil , Código de Barras del ADN Taxonómico/métodos , Guyana Francesa
2.
Nat Ecol Evol ; 5(6): 757-767, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795854

RESUMEN

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.


Asunto(s)
Bosques , Árboles , Biodiversidad , Brasil , Humanos
3.
Sci Rep ; 10(1): 10130, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576943

RESUMEN

Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.


Asunto(s)
Biodiversidad , Clasificación/métodos , Bosques , Ríos , Árboles/clasificación , Brasil
4.
Sci Rep ; 9(1): 11337, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383883

RESUMEN

Little is known regarding how trophic interactions shape community assembly in tropical forests. Here we assess multi-taxonomic community assembly rules using a rare standardized coordinated inventory comprising exhaustive surveys of five highly-diverse taxonomic groups exerting key ecological functions: trees, fungi, earthworms, ants and spiders. We sampled 36 1.9-ha plots from four remote locations in French Guiana including precise soil measurements, and we tested whether species turnover was coordinated among groups across geographic and edaphic gradients. All species group pairs exhibited significant compositional associations that were independent from soil conditions. For some of the pairs, associations were also partly explained by soil properties, especially soil phosphorus availability. Our study provides evidence for coordinated turnover among taxonomic groups beyond simple relationships with environmental factors, thereby refining our understanding regarding the nature of interactions occurring among these ecologically important groups.


Asunto(s)
Biodiversidad , Ecosistema , Bosque Lluvioso , Clima Tropical , Animales , Hormigas/fisiología , Guyana Francesa , Hongos/fisiología , Invertebrados/fisiología , Filogenia , Suelo , Árboles/fisiología
5.
Ecology ; 100(10): e02806, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257578

RESUMEN

To decipher the long-term influences of pre-Columbian land occupations on contemporary forest structure, diversity, and functioning in Amazonia, most of the previous research focused on the alluvial plains of the major rivers of the Amazon basin. Terra firme, that is, nonflooded forests, particularly from the Guiana Shield, are yet to be explored. In this study, we aim to give new insights into the subtle traces of pre-Columbian influences on present-day forests given the archaeological context of terra firme forests of the Guiana Shield. Following archaeological prospects on 13 sites in French Guiana, we carried out forest inventories inside and outside archaeological sites and assessed the potential pre-Columbian use of the sampled tree species using an original ethnobotanical database of the Guiana Shield region. Aboveground biomass (320 and 380 T/ha, respectively), basal area (25-30 and 30-35 m2 /ha, respectively), and tree density (550 and 700 stem/ha, respectively) were all significantly lower on anthropized plots (As) than on nonanthropized plots (NAs). Ancient human presence shaped the species composition of the sampled forests with Arecaceae, Burseraceae, and Lauraceae significantly more frequent in As and Annonaceae and Lecythidaceae more frequent in NAs. Although alpha diversity was not different between As and NAs, the presence of pre-Columbian sites enhances significantly the forest beta diversity at the landscape level. Finally, trees with edible fruits are positively associated with pre-Columbian sites, whereas trees used for construction or for their bark are negatively associated with pre-Columbian sites. Half a millennium after their abandonment, former occupied places from the inner Guiana Shield still bear noticeable differences with nonanthropized places. Considering the lack of data concerning archaeology of terra firme Amazonian forests, our results suggest that pre-Columbian influences on the structure (lower current biomass), diversity (higher beta diversity), and composition (linked to the past human tree uses) of current Amazonian forests might be more important than previously thought.


Asunto(s)
Bosques , Árboles , Brasil , Guyana Francesa , Humanos , Ocupaciones
6.
J Ethnobiol Ethnomed ; 14(1): 28, 2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29690891

RESUMEN

BACKGROUND: Palikur Amerindians live in the eastern part of French Guiana which is undergoing deep-seated changes due to the geographical and economic opening of the region. So far, Palikur's traditional ecological knowledge is poorly documented, apart from medicinal plants. The aim of this study was to document ethnobotanical practices related to traditional construction in the region. METHODS: A combination of qualitative and quantitative methods was used. Thirty-nine Palikur men were interviewed in three localities (Saint-Georges de l'Oyapock, Regina and Trois-Palétuviers) between December 2013 and July 2014. Twenty-four inventories of wood species used in traditional buildings were conducted in the villages, as well as ethnobotanical walks in the neighboring forests, to complete data about usable species and to determine Linnaean names. RESULTS: After an ethnographic description of roundwood Palikur habitat, the in situ wood selection process of Palikur is precisely described. A total of 960 roundwood pieces were inventoried in situ according to Palikur taxonomy, of which 860 were beams and rafters, and 100 posts in 20 permanent and 4 temporary buildings. Twenty-seven folk species were identified. Sixty-three folk species used in construction were recorded during ethnobotanical walks. They correspond to 263 botanical species belonging to 25 families. Posts in permanent buildings were made of yawu (Minquartia guianensis) (51%) and wakap (Vouacapoua americana) (14%). Beams and rafters were made of wood from Annonaceae (79%) and Lecythidaceae (13%) families. The most frequently used species were kuukumwi priye (Oxandra asbeckii), kuukumwi seyne (Pseudoxandra cuspidata), and pukuu (Xylopia nitida and X. cayennensis). CONCLUSIONS: Although the Palikur's relationship with their habitat is undergoing significant changes, knowledge about construction wood is still very much alive in the Oyapock basin. Many people continue to construct traditional buildings alongside modern houses, using a wide array of species described here for the first time, along with the techniques used.


Asunto(s)
Materiales de Construcción , Etnobotánica , Madera , Biodiversidad , Cultura , Ecosistema , Guyana Francesa , Recursos en Salud , Vivienda , Conocimiento
7.
PhytoKeys ; (68): 27-44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27698572

RESUMEN

The tropical rainforest of Amazonia is one of the most species-rich ecosystems on earth, with an estimated 16000 tree species. Due to this high diversity, botanical identification of trees in the Amazon is difficult, even to genus, often requiring the assistance of parataxonomists or taxonomic specialists. Advances in informatics tools offer a promising opportunity to develop user-friendly electronic keys to improve Amazonian tree identification. Here, we introduce an original multi-access electronic key for the identification of 389 tree genera occurring in French Guiana terra-firme forests, based on a set of 79 morphological characters related to vegetative, floral and fruit characters. Its purpose is to help Amazonian tree identification and to support the dissemination of botanical knowledge to non-specialists, including forest workers, students and researchers from other scientific disciplines. The electronic key is accessible with the free access software Xper², and the database is publicly available on figshare: https://figshare.com/s/75d890b7d707e0ffc9bf (doi: 10.6084/m9.figshare.2682550).

8.
PLoS One ; 4(10): e7483, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19834612

RESUMEN

BACKGROUND: Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. METHODOLOGY/PRINCIPAL FINDINGS: Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. CONCLUSION/SIGNIFICANCE: We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs.


Asunto(s)
ADN de Plantas/genética , Árboles/clasificación , Árboles/genética , Biodiversidad , Análisis por Conglomerados , Procesamiento Automatizado de Datos , Guyana Francesa , Marcadores Genéticos , Modelos Estadísticos , Filogenia , Estaciones del Año , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA