Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
iScience ; 26(1): 105737, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36594016

RESUMEN

Lsd1/Kdm1a functions both as a histone demethylase enzyme and as a scaffold for assembling chromatin modifier and transcription factor complexes to regulate gene expression. The relative contributions of Lsd1's demethylase and scaffolding functions during embryogenesis are not known. Here, we analyze two independent zebrafish lsd1/kdm1a mutant lines and show Lsd1 is required to repress primitive hematopoietic stem cell gene expression. Lsd1 rescue constructs containing point mutations that selectively abrogate its demethylase or scaffolding capacity demonstrate the scaffolding function of Lsd1, not its demethylase activity, is required for repression of gene expression in vivo. Lsd1's SNAG-binding domain mediates its scaffolding function and reinforces a negative feedback loop to repress the expression of SNAG-domain-containing genes during embryogenesis, including gfi1 and snai1/2. Our findings reveal a model in which the SNAG-binding and scaffolding function of Lsd1, and its associated negative feedback loop, provide transient and reversible regulation of gene expression during hematopoietic development.

2.
Mol Cancer Res ; 20(4): 501-514, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980595

RESUMEN

Growth factor independence-1 (GFI1) is a transcriptional repressor and master regulator of normal and malignant hematopoiesis. Repression by GFI1 is attributable to recruitment of LSD1-containing protein complexes via its SNAG domain. However, the full complement of GFI1 partners in transcriptional control is not known. We show that in T-acute lymphoblastic leukemia (ALL) cells, GFI1 and IKAROS are transcriptional partners that co-occupy regulatory regions of hallmark T-cell development genes. Transcriptional profiling reveals a subset of genes directly transactivated through the GFI1-IKAROS partnership. Among these is NOTCH3, a key factor in T-ALL pathogenesis. Surprisingly, NOTCH3 expression by GFI1 and IKAROS requires the GFI1 SNAG domain but occurs independent of SNAG-LSD1 binding. GFI1 variants deficient in LSD1 binding fail to activate NOTCH3, but conversely, small molecules that disrupt the SNAG-LSD1 interaction while leaving the SNAG primary structure intact stimulate NOTCH3 expression. These results identify a noncanonical transcriptional control mechanism in T-ALL which supports GFI1-mediated transactivation in partnership with IKAROS and suggest competition between LSD1-containing repressive complexes and others favoring transactivation. IMPLICATIONS: Combinatorial diversity and cooperation between DNA binding proteins and complexes assembled by them can direct context-dependent transcriptional outputs to control cell fate and may offer new insights for therapeutic targeting in cancer.


Asunto(s)
Proteínas de Unión al ADN , Regulación Leucémica de la Expresión Génica , Factor de Transcripción Ikaros , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Factores de Transcripción , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
JAMA Oncol ; 7(10): 1521-1528, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410295

RESUMEN

IMPORTANCE: Alterations in the IKZF1 gene drive B-cell acute lymphoblastic leukemia (B-ALL) but are not routinely used to stratify patients by risk because of inconsistent associations with outcomes. We describe a novel deletion in 22q11.22 that was consistently associated with very poor outcomes in patients with B-ALL with IKZF1 alterations. OBJECTIVE: To determine whether focal deletions within the λ variable chain region in chromosome 22q11.22 were associated with patients with B-ALL with IKZF1 alterations with the highest risk of relapse and/or death. DESIGN, SETTING, AND PARTICIPANTS: This cohort study included 1310 primarily high-risk pediatric patients with B-ALL who were taken from 6 independent clinical cohorts, consisting of 3 multicenter cohorts (AALL0232 [2004-2011], P9906 [2000-2003], and patients with Down syndrome who were pooled from national and international studies) and 3 single-institution cohorts (University of Utah [Salt Lake City], Children's Hospital of Philadelphia [Philadelphia, Pennsylvania], and St. Jude Children's Hospital [Memphis, Tennessee]). Data analysis began in 2011 using patients from the older studies first, and data analysis concluded in 2021. EXPOSURES: Focal 22q11.22 deletions. MAIN OUTCOMES AND MEASURES: Event-free and overall survival was investigated. The hypothesis that 22q11.22 deletions stratified the prognostic effect of IKZF1 alterations was formulated while investigating nearby deletions in VPREB1 in 2 initial cohorts (n = 270). Four additional cohorts were then obtained to further study this association (n = 1040). RESULTS: This study of 1310 patients with B-ALL (717 male [56.1%] and 562 female patients [43.9%]) found that focal 22q11.22 deletions are frequent (518 of 1310 [39.5%]) in B-ALL and inconsistent with physiologic V(D)J recombination. A total of 299 of 1310 patients with B-ALL had IKZF1 alterations. Among patients with IKZF1 alterations, more than half shared concomitant focal 22q11.22 deletions (159 of 299 [53.0%]). Patients with combined IKZF1 alterations and 22q11.22 deletions had worse outcomes compared with patients with IKZF1 alterations and wild-type 22q11.22 alleles in every cohort examined (combined cohorts: 5-year event-free survival rates, 43.3% vs 68.5%; hazard ratio [HR], 2.18; 95% CI, 1.54-3.07; P < .001; 5-year overall survival rates, 66.9% vs 83.9%; HR, 2.05; 95% CI, 1.32-3.21; P = .001). While 22q11.22 deletions were not prognostic in patients with wild-type IKZF1 , concomitant 22q11.22 deletions in patients with IKZF1 alterations stratified outcomes across additional risk groups, including patients who met the IKZF1plus criteria, and maintained independent significance in multivariate analysis for event-free survival (HR, 2.05; 95% CI, 1.27-3.29; P = .003) and overall survival (HR, 1.83; 95% CI, 1.01-3.34; P = .05). CONCLUSIONS AND RELEVANCE: This cohort study suggests that 22q11.22 deletions identify patients with B-ALL and IKZF1 alterations who have very poor outcomes and may offer a new genetic biomarker to further refine B-ALL risk stratification and treatment strategies.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Estudios de Cohortes , Femenino , Eliminación de Gen , Humanos , Factor de Transcripción Ikaros/genética , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico
4.
Mol Cell Biol ; 39(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30988160

RESUMEN

Growth factor independence 1B (GFI1B) coordinates assembly of transcriptional repressor complexes comprised of corepressors and histone-modifying enzymes to control gene expression programs governing lineage allocation in hematopoiesis. Enforced expression of GFI1B in K562 erythroleukemia cells favors erythroid over megakaryocytic differentiation, providing a platform to define molecular determinants of binary fate decisions triggered by GFI1B. We deployed proteome-wide proximity labeling to identify factors whose inclusion in GFI1B complexes depends upon GFI1B's obligate effector, lysine-specific demethylase 1 (LSD1). We show that GFI1B preferentially recruits core and putative elements of the BRAF-histone deacetylase (HDAC) (BHC) chromatin-remodeling complex (LSD1, RCOR1, HMG20A, HMG20B, HDAC1, HDAC2, PHF21A, GSE1, ZMYM2, and ZNF217) in an LSD1-dependent manner to control acquisition of erythroid traits by K562 cells. Among these elements, depletion of both HMG20A and HMG20B or of GSE1 blocks GFI1B-mediated erythroid differentiation, phenocopying impaired differentiation brought on by LSD1 depletion or disruption of GFI1B-LSD1 binding. These findings demonstrate the central role of the GFI1B-LSD1 interaction as a determinant of BHC complex recruitment to enable cell fate decisions driven by GFI1B.


Asunto(s)
Células Eritroides/citología , Histona Demetilasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Animales , Células COS , Diferenciación Celular , Chlorocebus aethiops , Regulación hacia Abajo , Células Eritroides/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Células K562 , Fenotipo , Acetato de Tetradecanoilforbol/farmacología , Transcripción Genética
6.
Biochem J ; 473(19): 3355-69, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27480105

RESUMEN

Proper hematopoietic cell fate decisions require co-ordinated functions of transcription factors, their associated co-regulators, and histone-modifying enzymes. Growth factor independence 1 (GFI1) is a zinc finger transcriptional repressor and master regulator of normal and malignant hematopoiesis. While several GFI1-interacting proteins have been described, how GFI1 leverages these relationships to carry out transcriptional repression remains unclear. Here, we describe a functional axis involving GFI1, SMYD2, and LSD1 that is a critical contributor to GFI1-mediated transcriptional repression. SMYD2 methylates lysine-8 (K8) within a -(8)KSKK(11)- motif embedded in the GFI1 SNAG domain. Methylation-defective GFI1 SNAG domain lacks repressor function due to failure of LSD1 recruitment and persistence of promoter H3K4 di-methyl marks. Methylation-defective GFI1 also fails to complement GFI1 depletion phenotypes in developing zebrafish and lacks pro-growth and survival functions in lymphoid leukemia cells. Our data show a discrete methylation event in the GFI1 SNAG domain that facilitates recruitment of LSD1 to enable transcriptional repression and co-ordinate control of hematopoietic cell fate in both normal and malignant settings.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Histona Demetilasas/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Linaje de la Célula , Metilación de ADN , Proteínas de Unión al ADN/química , Humanos , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Pez Cebra
7.
Mol Cell Biol ; 36(10): 1438-50, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26951200

RESUMEN

Cell fate specification requires precise coordination of transcription factors and their regulators to achieve fidelity and flexibility in lineage allocation. The transcriptional repressor growth factor independence 1 (GFI1) is comprised of conserved Snail/Slug/Gfi1 (SNAG) and zinc finger motifs separated by a linker region poorly conserved with GFI1B, its closest homolog. Moreover, GFI1 and GFI1B coordinate distinct developmental fates in hematopoiesis, suggesting that their functional differences may derive from structures within their linkers. We show a binding interface between the GFI1 linker and the SP-RING domain of PIAS3, an E3-SUMO (small ubiquitin-related modifier) ligase. The PIAS3 binding region in GFI1 contains a conserved type I SUMOylation consensus element, centered on lysine-239 (K239). In silico prediction algorithms identify K239 as the only high-probability site for SUMO modification. We show that GFI1 is modified by SUMO at K239. SUMOylation-resistant derivatives of GFI1 fail to complement Gfi1 depletion phenotypes in zebrafish primitive erythropoiesis and granulocytic differentiation in cultured human cells. LSD1/CoREST recruitment and MYC repression by GFI1 are profoundly impaired for SUMOylation-resistant GFI1 derivatives, while enforced expression of MYC blocks granulocytic differentiation. These findings suggest that SUMOylation within the GFI1 linker favors LSD1/CoREST recruitment and MYC repression to govern hematopoietic differentiation.


Asunto(s)
Hematopoyesis , Histona Demetilasas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Células COS , Diferenciación Celular , Chlorocebus aethiops , Regulación de la Expresión Génica , Células HEK293 , Células HL-60 , Humanos , Lisina/metabolismo , Ratones , Chaperonas Moleculares/química , Células 3T3 NIH , Unión Proteica , Proteínas Inhibidoras de STAT Activados/química , Proteínas Proto-Oncogénicas/química , Proteínas Represoras/química , Sumoilación
8.
Blood Coagul Fibrinolysis ; 26(7): 840-3, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26196196

RESUMEN

Paediatric patients with acute lymphoblastic leukaemia/lymphoma treated with pegasparaginase are at an increased risk of thrombosis. We evaluated changes in thrombin generation in the presence and absence of thrombomodulin using paired plasma samples collected from paediatric patients treated with pegasparaginase. Postpegasparaginase samples were significantly less sensitive to reductions in thrombin generation in the presence of thrombomodulin compared with prepegasparaginase, suggesting reduced protein C and S activity. This corresponded to a significant decrease in protein C and protein S antigen. Alterations in the protein C and S pathway may contribute to the increased risk of thrombosis in patients treated with pegasparaginase.


Asunto(s)
Antineoplásicos/uso terapéutico , Asparaginasa/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteína C/metabolismo , Proteína S/metabolismo , Trombina/efectos de los fármacos , Antineoplásicos/administración & dosificación , Asparaginasa/administración & dosificación , Niño , Femenino , Humanos , Masculino
9.
Genes Cancer ; 6(3-4): 129-43, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26000096

RESUMEN

In Ewing sarcoma, NKX2-2 is a critical activated target of the oncogenic transcription factor EWS/FLI that is required for transformation. However, its biological function in this malignancy is unknown. Here we provide evidence that NKX2-2 mediates the EWS/FLI-controlled block of mesenchymal features. Transcriptome-wide RNA sequencing revealed that NKX2-2 represses cell adhesion and extracellular matrix organization genes. NKX2-2-depleted cells form more focal adhesions and organized actin stress fibers, and spread over a wider area-hallmarks of mesenchymally derived cells. Furthermore, NKX2-2 represses the actin-stabilizing protein zyxin, suggesting that these morphological changes are attributable to zyxin de-repression. In addition, NKX2-2-knockdown cells display marked increases in migration and substrate adhesion. However, only part of the EWS/FLI phenotype is NKX2-2-dependent; consequently, NKX2-2 is insufficient to rescue EWS/FLI repression of mesenchymalization. Strikingly, we found that EWS/FLI-and NKX22-repressed genes are activated by ZEB2, which was previously shown to block Ewing sarcoma epithelialization. Together, these data support an emerging theme wherein Ewing sarcoma cells highly express transcription factors that maintain an undifferentiated state. Importantly, co-opting epithelial and mesenchymal traits by Ewing sarcoma cells may explain how the primary tumor grows rapidly while also "passively" metastasizing, without the need for transitions toward differentiated states, as in carcinomas.

10.
FASEB J ; 29(3): 786-95, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25398765

RESUMEN

Notch signaling largely determines intestinal epithelial cell fate. High Notch activity drives progenitors toward absorptive enterocytes by repressing secretory differentiation programs, whereas low Notch permits secretory cell assignment. Myeloid translocation gene-related 1 (MTGR1) is a transcriptional corepressor in the myeloid translocation gene/Eight-Twenty-One family. Given that Mtgr1(-/-) mice have a dramatic reduction of intestinal epithelial secretory cells, we hypothesized that MTGR1 is a key repressor of Notch signaling. In support of this, transcriptome analysis of laser capture microdissected Mtgr1(-/-) intestinal crypts revealed Notch activation, and secretory markers Mucin2, Chromogranin A, and Growth factor-independent 1 (Gfi1) were down-regulated in Mtgr1(-/-) whole intestines and Mtgr1(-/-) enteroids. We demonstrate that MTGR1 is in a complex with Suppressor of Hairless Homolog, a key Notch effector, and represses Notch-induced Hairy/Enhancer of Split 1 activity. Moreover, pharmacologic Notch inhibition using a γ-secretase inhibitor (GSI) rescued the hyperproliferative baseline phenotype in the Mtgr1(-/-) intestine and increased production of goblet and enteroendocrine lineages in Mtgr1(-/-) mice. GSI increased Paneth cell production in wild-type mice but failed to do so in Mtgr1(-/-) mice. We determined that MTGR1 can interact with GFI1, a transcriptional corepressor required for Paneth cell differentiation, and repress GFI1 targets. Overall, the data suggest that MTGR1, a transcriptional corepressor well characterized in hematopoiesis, plays a critical role in intestinal lineage allocation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Linaje de la Célula , Células Epiteliales/citología , Intestinos/citología , Inhibidores de Proteasas/farmacología , Receptores Notch/metabolismo , Proteínas Represoras/fisiología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Citometría de Flujo , Técnicas para Inmunoenzimas , Inmunoprecipitación , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ratones , Ratones Noqueados , Células de Paneth/citología , Células de Paneth/efectos de los fármacos , Células de Paneth/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
PLoS One ; 7(12): e51205, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251453

RESUMEN

Myeloid translocation genes (MTGs) are transcriptional corepressors originally identified in acute myelogenous leukemia that have recently been linked to epithelial malignancy with non-synonymous mutations identified in both MTG8 and MTG16 in colon, breast, and lung carcinoma in addition to functioning as negative regulators of WNT and Notch signaling. A yeast two-hybrid approach was used to discover novel MTG binding partners. This screen identified the Zinc fingers, C2H2 and BTB domain containing (ZBTB) family members ZBTB4 and ZBTB38 as MTG16 interacting proteins. ZBTB4 is downregulated in breast cancer and modulates p53 responses. Because ZBTB33 (Kaiso), like MTG16, modulates Wnt signaling at the level of TCF4, and its deletion suppresses intestinal tumorigenesis in the Apc(Min) mouse, we determined that Kaiso also interacted with MTG16 to modulate transcription. The zinc finger domains of Kaiso as well as ZBTB4 and ZBTB38 bound MTG16 and the association with Kaiso was confirmed using co-immunoprecipitation. MTG family members were required to efficiently repress both a heterologous reporter construct containing Kaiso binding sites (4×KBS) and the known Kaiso target, Matrix metalloproteinase-7 (MMP-7/Matrilysin). Moreover, chromatin immunoprecipitation studies placed MTG16 in a complex occupying the Kaiso binding site on the MMP-7 promoter. The presence of MTG16 in this complex, and its contributions to transcriptional repression both required Kaiso binding to its binding site on DNA, establishing MTG16-Kaiso binding as functionally relevant in Kaiso-dependent transcriptional repression. Examination of a large multi-stage CRC expression array dataset revealed patterns of Kaiso, MTG16, and MMP-7 expression supporting the hypothesis that loss of either Kaiso or MTG16 can de-regulate a target promoter such as that of MMP-7. These findings provide new insights into the mechanisms of transcriptional control by ZBTB family members and broaden the scope of co-repressor functions for the MTG family, suggesting coordinate regulation of transcription by Kaiso/MTG complexes in cancer.


Asunto(s)
Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HT29 , Humanos , Células K562 , Metaloproteinasa 7 de la Matriz/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Transcripción/genética
12.
Mol Cell Biol ; 31(13): 2544-51, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21536648

RESUMEN

Mtg16/Eto2 is a transcriptional corepressor that is disrupted by t(16;21) in acute myeloid leukemia. Using mice lacking Mtg16, we found that Mtg16 is a critical regulator of T-cell development. Deletion of Mtg16 led to reduced thymocyte development in vivo, and after competitive bone marrow transplantation, there was a nearly complete failure of Mtg16(-/-) cells to contribute to thymocyte development. This defect was recapitulated in vitro as Mtg16(-/-) Lineage(-)/Sca1(+)/c-Kit(+) (LSK) cells of the bone marrow or DN1 cells of the thymus failed to produce CD4(+)/CD8(+) cells in response to a Notch signal. Complementation of these defects by reexpressing Mtg16 showed that 3 highly conserved domains were somewhat dispensable for T-cell development but required the capacity of Mtg16 to suppress E2A-dependent transcriptional activation and to bind to the Notch intracellular domain. Thus, Mtg16 integrates the activities of signaling pathways and nuclear factors in the establishment of T-cell fate specification.


Asunto(s)
Linaje de la Célula , Linfopoyesis , Proteínas Nucleares/fisiología , Linfocitos T/fisiología , Factores de Transcripción/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Trasplante de Médula Ósea , Prueba de Complementación Genética , Ratones , Ratones Mutantes , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Receptores Notch/metabolismo , Proteínas Represoras , Factores de Transcripción/genética
14.
Cancer Treat Res ; 145: 127-47, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20306249

RESUMEN

The existence of non-random mutations in critical regulators of cell growth and differentiation is a recurring theme in cancer pathogenesis and provides the basis for our modern, molecular approach to the study and treatment of malignant diseases. Nowhere is this more true than in the study of leukemogenesis, where research has converged upon a critical group of genes involved in hematopoietic stem and progenitor cell self-renewal and fate specification. Prominent among these is the heterodimeric transcriptional regulator, RUNX1/CBFbeta. RUNX1 is a site-specific DNA-binding protein whose consensus response element is found in the promoters of many hematopoietically relevant genes. CBFbeta interacts with RUNX1, stabilizing its interaction with DNA to promote the actions of RUNX1/CBFbeta in transcriptional control. Both the RUNX1 and the CBFbeta genes participate in proleukemic chromosomal alterations. Together they contribute to approximately one-third of acute myelogenous leukemia (AML) and one-quarter of acute lymphoblastic leukemia (ALL) cases, making RUNX1 and CBFbeta the most frequently affected genes known in the pathogenesis of acute leukemia. Investigating the mechanisms by which RUNX1, CBFbeta, and their proleukemic fusion proteins influence leukemogenesis has contributed greatly to our understanding of both normal and malignant hematopoiesis. Here we present an overview of the structural features of RUNX1/CBFbeta and their derivatives, their roles in transcriptional control, and their contributions to normal and malignant hematopoiesis.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad beta del Factor de Unión al Sitio Principal/genética , Regulación Leucémica de la Expresión Génica/genética , Leucemia Mieloide Aguda/genética , Mutación , Proteínas de Neoplasias/genética , Proteínas de Fusión Oncogénica/fisiología , Transformación Celular Neoplásica/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/química , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Subunidad beta del Factor de Unión al Sitio Principal/química , Subunidad beta del Factor de Unión al Sitio Principal/fisiología , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/patología , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiología , Proteínas de Fusión Oncogénica/genética , Transcripción Genética , Translocación Genética
15.
Mol Cell Biol ; 30(7): 1852-63, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20123979

RESUMEN

The Notch signaling pathway regulates gene expression programs to influence the specification of cell fate in diverse tissues. In response to ligand binding, the intracellular domain of the Notch receptor is cleaved by the gamma-secretase complex and then translocates to the nucleus. There, it binds the transcriptional repressor CSL, triggering its conversion to an activator of Notch target gene expression. The events that control this conversion are poorly understood. We show that the transcriptional corepressor, MTG16, interacts with both CSL and the intracellular domains of Notch receptors, suggesting a pivotal role in regulation of the Notch transcription complex. The Notch1 intracellular domain disrupts the MTG16-CSL interaction. Ex vivo fate specification in response to Notch signal activation is impaired in Mtg16-/- hematopoietic progenitors, and restored by MTG16 expression. An MTG16 derivative lacking the binding site for the intracellular domain of Notch1 fails to restore Notch-dependent cell fate. These data suggest that MTG16 interfaces with critical components of the Notch transcription complex to affect Notch-dependent lineage allocation in hematopoiesis.


Asunto(s)
Hematopoyesis/fisiología , Proteínas Nucleares/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Células Cultivadas , Técnicas de Cocultivo , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Receptor Notch1/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética
16.
J Cell Biochem ; 72 Suppl 30-31(S30-31): 111-122, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-29345828

RESUMEN

Transforming growth factor-ß (TGF-ß) represents an evolutionarily conserved family of secreted factors that mobilize a complex signaling network to control cell fate by regulating proliferation, differentiation, motility, adhesion, and apoptosis. TGF-ß promotes the assembly of a cell surface receptor complex composed of type I (TßRI) and type II (TßRII) receptor serine/threonine kinases. In response to TGF-ß binding, TßRII recruits and activates TßRI through phosphorylation of the regulatory GS-domain. Activated TßRI then initiates cytoplasmic signaling pathways to produce cellular responses. SMAD proteins together constitute a unique signaling pathway with key roles in signal transduction by TGF-ß and related factors. Pathway-restricted SMADs are phosphorylated and activated by type I receptors in response to stimulation by ligand. Once activated, pathway-restricted SMADs oligomerize with the common-mediator Smad4 and subsequently translocate to the nucleus. Genetic analysis in Drosophila melanogaster and Caenorhabditis elegans, as well as TßRII and SMAD mutations in human tumors, emphasizes their importance in TGF-ß signaling. Mounting evidence indicates that SMADs cooperate with ubiquitous cytoplasmic signaling cascades and nuclear factors to produce the full spectrum of TGF-ß responses. Operating independently, these ubiquitous elements may influence the nature of cellular responses to TGF-ß. Additionally, a variety of regulatory schemes contribute temporal and/or spatial restriction to TGF-ß responses. This report reviews our current understanding of TGF-ß signal transduction and considers the importance of a cooperative signaling paradigm to TGF-ß-mediated biological responses. J. Cell. Biochem. Suppls. 30/31:111-122, 1998. © 1998 Wiley-Liss, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...