Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
Geroscience ; 46(1): 621-643, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37870702

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia and is characterized by a progressive decline in cognitive abilities. A pathological hallmark of AD is a region-specific accumulation of the amyloid-beta protein (Aß). Here, we explored the association between regional Aß deposition, sociodemographic, and local biochemical factors. We quantified the Aß burden in postmortem cortical samples from parietal (PCx) and temporal (TCx) regions of 27 cognitively unimpaired (CU) and 15 AD donors, aged 78-100 + years. Histological images of Aß immunohistochemistry and local concentrations of pathological and inflammatory proteins were obtained at the "Aging, Dementia and TBI Study" open database. We used the area fraction fractionator stereological methodology to quantify the Aß burden in the gray and white matter within each cortical region. We found higher Aß burdens in the TCx of AD octogenarians compared to CU ones. We also found higher Aß loads in the PCx of AD nonagenarians than in AD octogenarians. Moreover, AD women exhibited increased Aß deposition compared to CU women. Interestingly, we observed a negative correlation between education years and Aß burden in the white matter of both cortices in CU samples. In AD brains, the Aß40, Aß42, and pTau181 isoforms of Aß and Tau proteins were positively correlated with the Aß burden. Additionally, in the TCx of AD donors, the proinflammatory cytokine TNFα showed a positive correlation with the Aß load. These novel findings contribute to understanding the interplay between sociodemographic characteristics, local inflammatory signaling, and the development of AD-related pathology in the cerebral cortex.


Asunto(s)
Enfermedad de Alzheimer , Anciano de 80 o más Años , Humanos , Femenino , Enfermedad de Alzheimer/metabolismo , Factores Sociodemográficos , Corteza Cerebral/metabolismo , Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo
2.
J Chem Neuroanat ; 96: 73-78, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30597197

RESUMEN

Parkinson's disease (PD) is mainly characterized by a dopamine deficiency accompanied by structural and functional changes in striatal neuronal projections. However, studies have considered PD as a multi-systemic disease in which the neurodegenerative process extends beyond the dopaminergic system. Therefore, the purpose of the present study was to investigate the time-course of serotonergic neuron damage in a progressive model of parkinsonism induced by a low dose of reserpine. Thus, male Wistar rats received 4 (ST, short-treatment of reserpine) or 10 (MT, middle-term treatment of reserpine) subcutaneous injections of vehicle or reserpine (0.1 mg/kg) at a volume of 1 mL/kg body weight, on alternate days. Animals were euthanized 48 h after the last injection for immunohistochemical analysis. After ST, 5-HT immunoreactivity decreased in hippocampal subareas (CA1 and CA3) and medial prefrontal cortex (mPFC) compared to vehicle. Furthermore, animals MT-treated also showed progressive decrease of 5-HT immunoreactivity in CA1 and CA3 subareas. Conversely, a significant increase of 5-HT immunoreactivity was found in mPFC and dorsal raphe nucleus (DRN) in animals submitted to MT when compared to ST exposure. The results showed that, in the repeated low-dose reserpine rat model, variations in the immunoreactivity of 5-HT start early in the course of progressive parkinsonism.


Asunto(s)
Inhibidores de Captación Adrenérgica/toxicidad , Encéfalo/metabolismo , Trastornos Parkinsonianos/metabolismo , Reserpina/toxicidad , Serotonina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Masculino , Ratas , Ratas Wistar
3.
Brain Res Bull ; 142: 297-303, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30118749

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease related to the dopaminergic system. The etiology is not fully understood, but it is known that PD is a multifactorial disease that involves genetic and environmental factors, including pesticides. One of these, Deltamethrin (DM), has been widely used for vector control in crops, farming, veterinary medicine and domestic pest control. The purpose of the present study was to investigate the effect of DM repeated administration on motor, cognitive and emotional behavior and dopaminergic parameters. Male Wistar rats received 3 intranasal (i.n.) injections of 100 µL (50 µL/nostril) of DM 0.5 µg/µl or Vehicle (saline solution 0.9%), one injection per week. We observed that DM caused memory (novel object recognition task) and emotion (contextual conditioned fear) alterations accompanied by reduction of TH immunoreactivity in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA), and increase of TH immunoreactivity in the dorsal striatum. Motor alterations (catalepsy and open field task) were not observed throughout treatment. These findings suggest a possible early disruption of the dopaminergic pathway caused by repeated DM exposure, similar to that observed in early stages of PD.


Asunto(s)
Emociones/efectos de los fármacos , Memoria/efectos de los fármacos , Nitrilos/efectos adversos , Plaguicidas/efectos adversos , Piretrinas/efectos adversos , Tirosina 3-Monooxigenasa/metabolismo , Administración Intranasal , Animales , Emociones/fisiología , Masculino , Memoria/fisiología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Actividad Motora/efectos de los fármacos , Trastornos Parkinsonianos/etiología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Distribución Aleatoria , Ratas Wistar , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología
4.
Front Neuroanat ; 12: 36, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867376

RESUMEN

In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN, classically known as the master circadian clock, generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity. Strategies on the use of time by animals can provide important clues about how some species are adapted to competitive process in nature. Few studies have provided information about temporal niche in bats with special attention on the neural substrate underlies circadian rhythms. The aim of this study was to investigate these circadian centers with respect to their cytoarchitecture, chemical content and retinal projections in the flat-faced fruit-eating bat (Artibeus planirostris), a chiropteran endemic to South America. Unlike other species of phyllostomid bats, the flat-faced fruit-eating bat's peak of activity occurs 5 h after sunset. This raises several questions about the structure and function of the SCN and IGL in this species. We carried out a mapping of the retinal projections and cytoarchitectural study of the nuclei using qualitative and quantitative approaches. Based on relative optical density findings, the SCN and IGL of the flat-faced fruit-eating bat receive bilaterally symmetric retinal innervation. The SCN contains vasopressin (VP) and vasoactive intestinal polypeptide (VIP) neurons with neuropeptide Y (NPY), serotonin (5-HT) and glutamic acid decarboxylase (GAD) immunopositive fibers/terminals and is marked by intense glial fibrillary acidic protein (GFAP) immunoreactivity. The IGL contains NPY perikarya as well as GAD and 5-HT immunopositive terminals and is characterized by dense GFAP immunostaining. In addition, stereological tools were combined with Nissl stained sections to estimate the volumes of the circadian centers. Taken together, the present results in the flat-faced fruit-eating bat reveal some differences compared to other bat species which might explain the divergence in the hourly activity among bats in order to reduce the competitive potential and resource partitioning in nature.

5.
Front Aging Neurosci ; 9: 78, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28396635

RESUMEN

Reserpine is an irreversible inhibitor of vesicular monoamine transporter-2 (VMAT2) used to study Parkinson's disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low-dose of reserpine was proposed as a progressive model of PD. Rats under this treatment show progressive catalepsy behavior, oral movements and spontaneous motor activity decrement. In parallel, compared to Wistar rats, spontaneously hypertensive rats (SHR) are resistant to acute reserpine-induced oral dyskinesia. We aimed to assess whether SHR would present differential susceptibility to repeated reserpine-induced deficits in the progressive model of PD. Male Wistar and SHR rats were administered 15 subcutaneously (s.c.) injections of reserpine (0.1 mg/kg) or vehicle, every other day and motor activity was assessed by the catalepsy, oral movements and open field tests. Only reserpine-treated Wistar rats presented increased latency to step down in the catalepsy test and impaired spontaneous activity in the open field. On the other hand, there was an increase in oral movements in both reserpine-treated strains, although with reduced magnitude and latency to instauration in SHR. After a 15-day withdrawn period, both strains recovered from motor impairment, but SHR animals expressed reduced latencies to reach control levels. Finally, we performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last injection or 15 days after withdrawn. Reserpine-treated animals presented a reduction in TH and an increase in α-syn immunoreactivity in the substantia nigra and dorsal striatum (dSTR), which were both recovered after 15 days of withdraw. Furthermore, SHR rats were resistant to reserpine-induced TH decrement in the substantia nigra, and presented reduced immunoreactivity to α-syn in the dSTR relative to Wistar rats, irrespective of treatment. This effect was accompanied by increase of malondaldhyde (MDA) in the striatum of reserpine-treated Wistar rats, while SHR presented reduced MDA in both control and reserpine conditions relative to Wistar strain. In conclusion, the current results show that SHR are resilient to motor and neurochemical impairments induced by the repeated low-dose reserpine protocol. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potential relevant targets to the study of susceptibility to PD.

6.
Neurosci Res ; 121: 54-59, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28288865

RESUMEN

The circadian timing system (CTS) anticipates optimal physiological patterns in response to environmental fluctuations, such as light-dark cycle. Since age-related disruption of circadian synchronization is linked to several pathological conditions, we characterized alterations of neurochemical constituents and retinal projections to the major pacemaker of CTS, the suprachiasmatic nucleus (SCN), in adult and aged marmosets. We used intraocular injections of neural tracer Cholera toxin b (CTb) to report age-related reductions in CTb, neuropeptide Y and serotonin immunoreactivities. Considering these projections arise in SCN from nuclei that relay environmental information to entrain the circadian clock, we provide important anatomical correlates to age-associated physiological deficits.


Asunto(s)
Vías Aferentes/fisiología , Envejecimiento , Neuropéptido Y/metabolismo , Retina/metabolismo , Serotonina/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Callithrix , Toxina del Cólera/metabolismo , Densitometría , Masculino , Estadísticas no Paramétricas , Núcleo Supraquiasmático/citología
7.
J Chem Neuroanat ; 77: 100-109, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27292410

RESUMEN

It is widely known that the catecholamine group is formed by dopamine, noradrenaline and adrenaline. Its synthesis is regulated by the enzyme called tyrosine hydroxylase. 3-hydroxytyramine/dopamine (DA) is a precursor of noradrenaline and adrenaline synthesis and acts as a neurotransmitter in the central nervous system. The three main nuclei, being the retrorubral field (A8 group), the substantia nigra pars compacta (A9 group) and the ventral tegmental area (A10 group), are arranged in the die-mesencephalic portion and are involved in three complex circuitries - the mesostriatal, mesolimbic and mesocortical pathways. These pathways are involved in behavioral manifestations, motricity, learning, reward and also in pathological conditions such as Parkinson's disease and schizophrenia. The aim of this study was to perform a morphological analysis of the A8, A9 and A10 groups in the common marmoset (Callithrix jacchus - a neotropical primate), whose morphological and functional characteristics support its suitability for use in biomedical research. Coronal sections of the marmoset brain were submitted to Nissl staining and TH-immunohistochemistry. The morphology of the neurons made it possible to subdivide the A10 group into seven distinct regions: interfascicular nucleus, raphe rostral linear nucleus and raphe caudal linear nucleus in the middle line; paranigral and parainterfascicular nucleus in the middle zone; the rostral portion of the ventral tegmental area nucleus and parabrachial pigmented nucleus located in the dorsolateral portion of the mesencephalic tegmentum. The A9 group was divided into four regions: substantia nigra compacta dorsal and ventral tiers; substantia nigra compacta lateral and medial clusters. No subdivisions were made for the A8 group. These results reveal that A8, A9 and A10 are phylogenetically stable across species. As such, further studies concerning such divisions are necessary in order to evaluate the occurrence of subdivisions that express DA in other primate species, with the aim of characterizing its functional relevance.


Asunto(s)
Sustancia Negra/anatomía & histología , Sustancia Negra/enzimología , Tegmento Mesencefálico/anatomía & histología , Tegmento Mesencefálico/enzimología , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/anatomía & histología , Área Tegmental Ventral/enzimología , Animales , Conducta , Callithrix , Inmunohistoquímica , Aprendizaje , Masculino , Actividad Motora , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Neuronas/ultraestructura , Núcleos del Rafe/anatomía & histología , Núcleos del Rafe/citología , Núcleos del Rafe/fisiología , Recompensa
8.
Age (Dordr) ; 38(1): 4, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26718202

RESUMEN

Aging leads to several anatomical and functional deficits in circadian timing system. In previous works, we observed morphological alterations with age in hypothalamic suprachiasmatic nuclei, one central component of this system. However, there are few data regarding aging effects on other central components of this system, such as thalamic intergeniculate leaflet (IGL). In this context, we studied possible age-related alterations in neurochemical components and retinal projections of rat IGL. For this goal, young (3 months), adult (13 months), and aged (23 months) Wistar rats were submitted to an intraocular injection of neural tracer, cholera toxin subunit b (CTb), 5 days before a tissue fixation process by paraformaldehyde perfusion. Optical density measurements and cell count were performed at digital pictures of brain tissue slices processed by immunostaining for glutamic acid decarboxylase (GAD), enkephalin (ENK), neuropeptide Y (NPY) and CTb, characteristic markers of IGL and its retinal terminals. We found a significant age-related loss in NPY immunoreactive neurons, but not in immunoreactivity to GAD and ENK. We also found a decline of retinal projections to IGL with age. We conclude aging impairs both a photic environmental clue afferent to IGL and a neurochemical expression which has an important modulatory circadian function, providing strong anatomical correlates to functional deficits of the aged biological clock.


Asunto(s)
Envejecimiento/metabolismo , Ritmo Circadiano , Hipotálamo/química , Neuropéptido Y/metabolismo , Retina/química , Núcleo Supraquiasmático/química , Animales , Hipotálamo/citología , Inmunohistoquímica , Masculino , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Wistar , Retina/citología , Núcleo Supraquiasmático/citología
9.
Physiol Behav ; 147: 319-23, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25980629

RESUMEN

Clinical studies have shown that women during perimenopause and menopause have a higher incidence in the diagnoses of psychiatric problems compared with men. However, little literature information about the influence of spontaneous perimenopause on anxiety- and mood-related behaviors in mice is available. To this aim, we compared the behavioral responses of middle-aged and young adult female mice both in the diestrus phase in the elevated plus-maze, open field and forced swimming tests. In middle-aged mice, the duration of the estrous cycle was significantly prolonged compared to young adults, thus indicating that our middle-aged mice are in the perimenopausal period. In the elevated plus-maze test, middle-aged mice explored less the open arms when compared to young adults, suggesting an anxiogenic-like phenotype. No significant differences were observed in the estrogen plasma levels and emotional behavior in the forced swim and open field tests. In conclusion, the spontaneous failure of the estrous cycle increased anxiety in middle-aged females. These data suggest that the perimenopausal period has a significant influence on anxiety-related behaviors in female mice.


Asunto(s)
Envejecimiento/fisiología , Ansiedad/etiología , Ansiedad/fisiopatología , Ciclo Estral/fisiología , Animales , Ansiedad/sangre , Ansiedad/psicología , Modelos Animales de Enfermedad , Electroquímica , Estrógenos/sangre , Conducta Exploratoria/fisiología , Femenino , Locomoción , Aprendizaje por Laberinto/fisiología , Ratones , Método Simple Ciego , Natación/psicología
10.
Psychol. neurosci. (Impr.) ; 6(3): 287-297, July-Dec. 2013. ilus
Artículo en Inglés | LILACS | ID: lil-703092

RESUMEN

Animals have neural structures that allow them to anticipate environmental changes and then regulate physiological and behavioral functions in response to these alterations. The suprachiasmatic nucleus of the hypothalamus (SCN) is the main circadian pacemaker in many mammalian species. This structure synchronizes the biological rhythm based on photic information that is transmitted to the SCN through the retinohypothalamic tract. The aging process changes the structural complexity of the nervous system, from individual nerve cells to global changes, including the atrophy of total gray matter. Aged animals show internal time disruptions caused by morphological and neurochemical changes in SCN components. The effects of aging on circadian rhythm range from effects on simple physiological functions to effects on complex cognitive performance, including many psychiatric disorders that influence the well-being of the elderly. In this review, we summarize the effects of aging on morphological, neurochemical, and circadian rhythmic functions coordinated by the main circadian pacemaker, the SCN...


Asunto(s)
Humanos , Envejecimiento , Núcleo Supraquiasmático , Ritmo Circadiano
11.
Behav Brain Res ; 253: 68-77, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23831411

RESUMEN

Studies have suggested that cognitive deficits can precede motor alterations in Parkinson's disease (PD). However, in general, classic animal models are based on severe motor impairment after one single administration of neurotoxins, and thereby do not express the progressive nature of the pathology. A previous study showed that the repeated administration with a low dose (0.1mg/kg) of the monoamine depleting agent reserpine induces a gradual appearance of motor signs of pharmacological parkinsonism in rats. Here, we showed this repeated treatment with reserpine induced a memory impairment (evaluated by the novel object recognition task) before the gradual appearance of the motor signs. Additionally, these alterations were accompanied by decreased tyrosine hydroxylase (TH) striatal levels and reduced number of TH+ cells in substantia nigra pars compacta (SNpc). After 30 days without treatment, reserpine-treated animals showed normal levels of striatal TH, partial recovery of TH+ cells in SNpc, recovery of motor function, but not reversal of the memory impairment. Furthermore, the motor alterations were statistically correlated with decreased TH levels (GD, CA1, PFC and DS) and number of TH+ cells (SNpc and VTA) in the brain. Thus, we extended previous results showing that the gradual appearance of motor impairment induced by repeated treatment with a low dose of reserpine is preceded by short-term memory impairment, as well as accompanied by neurochemical alterations compatible with the pathology of PD.


Asunto(s)
Cognición/fisiología , Discinesia Inducida por Medicamentos/psicología , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/psicología , Reserpina , Simpaticolíticos , Tirosina 3-Monooxigenasa/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Catalepsia/inducido químicamente , Catalepsia/psicología , Interpretación Estadística de Datos , Inmunohistoquímica , Masculino , Actividad Motora/efectos de los fármacos , Enfermedad de Parkinson Secundaria/enzimología , Ratas , Reconocimiento en Psicología/efectos de los fármacos
12.
Psychol. neurosci. (Impr.) ; 6(3): 287-297, 2013. ilus
Artículo en Inglés | Index Psicología - Revistas | ID: psi-61622

RESUMEN

Animals have neural structures that allow them to anticipate environmental changes and then regulate physiological and behavioral functions in response to these alterations. The suprachiasmatic nucleus of the hypothalamus (SCN) is the main circadian pacemaker in many mammalian species. This structure synchronizes the biological rhythm based on photic information that is transmitted to the SCN through the retinohypothalamic tract. The aging process changes the structural complexity of the nervous system, from individual nerve cells to global changes, including the atrophy of total gray matter. Aged animals show internal time disruptions caused by morphological and neurochemical changes in SCN components. The effects of aging on circadian rhythm range from effects on simple physiological functions to effects on complex cognitive performance, including many psychiatric disorders that influence the well-being of the elderly. In this review, we summarize the effects of aging on morphological, neurochemical, and circadian rhythmic functions coordinated by the main circadian pacemaker, the SCN.(AU)


Asunto(s)
Núcleo Supraquiasmático , Envejecimiento , Ritmo Circadiano
13.
Neurosci Lett ; 488(1): 6-10, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21055446

RESUMEN

Serotonin (5-HT) is involved in the fine adjustments at several brain centers including the core of the mammal circadian timing system (CTS) and the hypothalamic suprachiasmatic nucleus (SCN). The SCN receives massive serotonergic projections from the midbrain raphe nuclei, whose inputs are described in rats as ramifying at its ventral portion overlapping the retinohypothalamic and geniculohypothalamic fibers. In the SCN, the 5-HT actions are reported as being primarily mediated by the 5-HT1 type receptor with noted emphasis for 5-HT(1B) subtype, supposedly modulating the retinal input in a presynaptic way. In this study in a New World primate species, the common marmoset (Callithrix jacchus), we showed the 5-HT(1B) receptor distribution at the dorsal SCN concurrent with a distinctive location of 5-HT-immunoreactive fibers. This finding addresses to a new discussion on the regulation and synchronization of the circadian rhythms in recent primates.


Asunto(s)
Receptor de Serotonina 5-HT1B/metabolismo , Núcleo Supraquiasmático/metabolismo , Animales , Callithrix/anatomía & histología , Toxina del Cólera/metabolismo , Diagnóstico por Imagen , Masculino , Vías Visuales/metabolismo
14.
Brain Res ; 1241: 56-61, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-18817760

RESUMEN

The thalamic paraventricular nucleus (PVT) receives afferents from numerous brain areas, including the hypothalamic suprachiasmatic nucleus (SCN), considered to be the major circadian pacemaker. The PVT also sends projections to the SCN, limbic system centers and some nuclei involved in the control of the Sleep-Wake cycle. In this study, we report the identification of a hitherto not reported direct retinal projection to the PVT of the rock cavy, a typical rodent species of the northeast region of Brazil. After unilateral intravitreal injections of cholera toxin subunit B (CTb), anterogradely transported CTb-immunoreactive fibers and presumptive terminals were seen in the PVT. Some possible functional correlates of the present data are briefly discussed, including the role of the PVT in the modulation of the circadian rhythms by considering the reciprocal connections between the PVT and the SCN. The present work is the first to show a direct retinal projection to the PVT of a rodent and may contribute to elucidate the anatomical substrate of the functionally demonstrated involvement of this midline thalamic nucleus in the modulation of the circadian timing system.


Asunto(s)
Axones/ultraestructura , Ritmo Circadiano/fisiología , Núcleos Talámicos de la Línea Media/citología , Células Ganglionares de la Retina/citología , Roedores/anatomía & histología , Vías Visuales/citología , Animales , Axones/fisiología , Mapeo Encefálico , Toxina del Cólera , Inmunohistoquímica , Núcleos Talámicos de la Línea Media/fisiología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Retina/citología , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Roedores/fisiología , Especificidad de la Especie , Coloración y Etiquetado , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/fisiología , Vías Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...