Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 142(7): 1336-45, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25758464

RESUMEN

Efficient neuronal conductance requires that axons are insulated by glial cells. For this, glial membranes need to wrap around axons. Invertebrates show a relatively simple extension of glial membranes around the axons, resembling Remak fibers formed by Schwann cells in the mammalian peripheral nervous system. To unravel the molecular pathways underlying differentiation of glial cells that provide axonal wrapping, we are using the genetically amenable Drosophila model. At the end of larval life, the wrapping glia differentiates into very large cells, spanning more than 1 mm of axonal length. The extension around axonal membranes is not influenced by the caliber of the axon or its modality. Using cell type-specific gene knockdown we show that the extension of glial membranes around the axons is regulated by an autocrine activation of the EGF receptor through the neuregulin homolog Vein. This resembles the molecular mechanism employed during cell-autonomous reactivation of glial differentiation after injury in mammals. We further demonstrate that Vein, produced by the wrapping glia, also regulates the formation of septate junctions in the abutting subperineurial glia. Moreover, the wrapping glia indirectly controls the proliferation of the perineurial glia. Thus, the wrapping glia appears center stage to orchestrate the development of the different glial cell layers in a peripheral nerve.


Asunto(s)
Axones/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurregulinas/metabolismo , Neuroglía/metabolismo , Sistema Nervioso Periférico/metabolismo , Homología de Secuencia de Aminoácido , Animales , Axones/ultraestructura , Barrera Hematoencefálica/metabolismo , Diferenciación Celular , Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Receptores ErbB/metabolismo , Larva/citología , Larva/metabolismo , Larva/ultraestructura , Neuroglía/citología , Neuroglía/ultraestructura , Nervios Periféricos/citología , Nervios Periféricos/metabolismo , Nervios Periféricos/ultraestructura , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/ultraestructura , Transducción de Señal
2.
J Neurosci ; 31(21): 7876-85, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21613501

RESUMEN

The blood-brain barrier of Drosophila is established by the subperineurial glial cells that encase the CNS and PNS. The subperineurial glial cells are thin, highly interdigitated cells with epithelial character. The establishment of extensive septate junctions between these cells is crucial for the prevention of uncontrolled paracellular leakage of ions and solutes from the hemolymph into the nervous system. In the absence of septate junctions, macromolecules such as fluorescently labeled dextran can easily cross the blood-brain barrier. To identify additional components of the blood-brain barrier, we followed a genetic approach and injected Texas-Red-conjugated dextran into the hemolymph of embryos homozygous for chromosomal deficiencies. In this way, we identified the 153-aa-large protein Coiled, a new member of the Ly6 (leukocyte antigen 6) family, as being crucially required for septate junction formation and blood-brain barrier integrity. In coiled mutants, the normal distribution of septate junction markers such as NeurexinIV, Coracle, or Discs large is disturbed. EM analyses demonstrated that Coiled is required for the formation of septate junctions. We further show that Coiled is expressed by the subsperineurial glial cells in which it is anchored to the cell membrane via a glycosylphosphatidylinositol anchor and mediates adhesive properties. Clonal rescue studies indicate that the presence of Coiled is required symmetrically on both cells engaged in septate junction formation.


Asunto(s)
Barrera Hematoencefálica/fisiología , Antígenos CD59/fisiología , Moléculas de Adhesión Celular/fisiología , Proteínas de Drosophila/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Antígenos Ly/genética , Antígenos Ly/fisiología , Barrera Hematoencefálica/ultraestructura , Antígenos CD59/genética , Drosophila , Proteínas de Drosophila/genética , Datos de Secuencia Molecular
3.
Nature ; 460(7256): 758-61, 2009 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-19597479

RESUMEN

The formation of a complex nervous system requires the intricate interaction of neurons and glial cells. Glial cells generally migrate over long distances before they initiate their differentiation, which leads to wrapping and insulation of axonal processes. The molecular pathways coordinating the switch from glial migration to glial differentiation are largely unknown. Here we demonstrate that, within the Drosophila eye imaginal disc, fibroblast growth factor (FGF) signalling coordinates glial proliferation, migration and subsequent axonal wrapping. Glial differentiation in the Drosophila eye disc requires a succession from glia-glia interaction to glia-neuron interaction. The neuronal component of the fly eye develops in the peripheral nervous system within the eye-antennal imaginal disc, whereas glial cells originate from a pool of central-nervous-system-derived progenitors and migrate onto the eye imaginal disc. Initially, glial-derived Pyramus, an FGF8-like ligand, modulates glial cell number and motility. A switch to neuronally expressed Thisbe, a second FGF8-like ligand, then induces glial differentiation. This switch is accompanied by an alteration in the intracellular signalling pathway through which the FGF receptor channels information into the cell. Our findings reveal how a switch from glia-glia interactions to glia-neuron interactions can trigger formation of glial membrane around axonal trajectories. These results disclose an evolutionarily conserved control mechanism of axonal wrapping, indicating that Drosophila might serve as a model to understand glial disorders in humans.


Asunto(s)
Diferenciación Celular , Drosophila melanogaster/metabolismo , Ojo/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Transducción de Señal , Animales , Axones/metabolismo , Movimiento Celular , Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Ojo/inervación , Ojo/metabolismo , Cobayas , Ligandos
4.
J Neurosci ; 28(3): 587-97, 2008 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-18199760

RESUMEN

The function of a complex nervous system depends on an intricate interplay between neuronal and glial cell types. One of the many functions of glial cells is to provide an efficient insulation of the nervous system and thereby allowing a fine tuned homeostasis of ions and other small molecules. Here, we present a detailed cellular analysis of the glial cell complement constituting the blood-brain barrier in Drosophila. Using electron microscopic analysis and single cell-labeling experiments, we characterize different glial cell layers at the surface of the nervous system, the perineurial glial layer, the subperineurial glial layer, the wrapping glial cell layer, and a thick layer of extracellular matrix, the neural lamella. To test the functional roles of these sheaths we performed a series of dye penetration experiments in the nervous systems of wild-type and mutant embryos. Comparing the kinetics of uptake of different sized fluorescently labeled dyes in different mutants allowed to conclude that most of the barrier function is mediated by the septate junctions formed by the subperineurial cells, whereas the perineurial glial cell layer and the neural lamella contribute to barrier selectivity against much larger particles (i.e., the size of proteins). We further compare the requirements of different septate junction components for the integrity of the blood-brain barrier and provide evidence that two of the six Claudin-like proteins found in Drosophila are needed for normal blood-brain barrier function.


Asunto(s)
Barrera Hematoencefálica/citología , Barrera Hematoencefálica/fisiología , Drosophila/anatomía & histología , Drosophila/fisiología , Neuroglía/fisiología , Animales , Animales Modificados Genéticamente , Barrera Hematoencefálica/embriología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Electrónica de Transmisión/métodos , Mutación , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Neuroglía/ultraestructura
5.
J Neurosci ; 27(48): 13130-9, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18045907

RESUMEN

Any complex nervous system is made out of two major cell types, neurons and glial cells. A hallmark of glial cells is their pronounced ability to migrate. En route to their final destinations, glial cells are generally guided by neuronal signals. Here we show that in the developing visual system of Drosophila glial cell migration is largely controlled by glial-glial interactions and occurs independently of axonal contact. Differentiation into wrapping glia is initiated close to the morphogenetic furrow. Using single cell labeling experiments we identified six distinct glial cell types in the eye disc. The migratory glial population is separated from the wrapping glial cells by the so-called carpet cells, extraordinary large glial cells, each covering a surface area of approximately 10,000 epithelial cells. Subsequent cell ablation experiments demonstrate that the carpet glia regulates glial migration in the eye disc epithelium and suggest a new model underlying glial migration and differentiation in the developing visual system.


Asunto(s)
Movimiento Celular/fisiología , Ojo/citología , Neuroglía/fisiología , Animales , Animales Modificados Genéticamente , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Larva , Microscopía Electrónica de Transmisión/métodos , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/clasificación , Neuroglía/ultraestructura , Neuronas/fisiología
6.
Neuron Glia Biol ; 3(1): 35-43, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18634576

RESUMEN

In complex organisms the nervous system comprises two cell types: neurons and glial cells. Their correct interplay is of crucial importance during both the development of the nervous system and for later function of the nervous system. In recent years tools have been developed for Drosophila that enable genetic approaches to understanding glial development and differentiation. Focusing on peripheral glial cells we first summarize wild-type development, then introduce some of the relevant genes that have been identified. Despite obvious differences between Drosophila and mammalian glial cells, the molecular machinery that controls terminal differentiation appears well conserved.

7.
Neuron ; 52(6): 969-80, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17178401

RESUMEN

In both vertebrates and invertebrates, glial cells wrap axonal processes to ensure electrical conductance. Here we report that Crooked neck (Crn), the Drosophila homolog of the yeast Clf1p splicing factor, is directing peripheral glial cell maturation. We show that crooked neck is expressed and required in glial cells to control migration and axonal wrapping. Within the cytoplasm, Crn interacts with the RNA-binding protein HOW and then translocates to the nucleus where the Crn/HOW complex controls glial differentiation by facilitating splicing of specific target genes. By using a GFP-exon trap approach, we identified some of the in vivo target genes that encode proteins localized in autocellular septate junctions. In conclusion, here we show that glial cell differentiation is controlled by a cytoplasmic assembly of splicing components, which upon translocation to the nucleus promote the splicing of genes involved in the assembly of cellular junctions.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Drosophila/fisiología , Neuroglía/fisiología , Proteínas Nucleares/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular , Línea Celular , Núcleo Celular/metabolismo , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Femenino , Genes de Insecto/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Microscopía Electrónica de Transmisión/métodos , Mutación/fisiología , Neuroglía/ultraestructura , Proteínas Nucleares/genética , Empalme del ARN/fisiología , Proteínas de Unión al ARN/genética , Transfección/métodos , Alas de Animales/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA