Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2318870121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442172

RESUMEN

We introduce MINFLUX localization with interferometric illumination through opposing objective lenses for maximizing the attainable precision in 3D-localization of single inelastic scatterers, such as fluorophores. Our 4Pi optical configuration employs three sequentially tilted counter-propagating beam pairs for illumination, each providing a narrow interference minimum of illumination intensity at the focal point. The localization precision is additionally improved by adding the inelastically scattered or fluorescence photons collected through both objective lenses. Our 4Pi configuration yields the currently highest precision per detected photon among all localization schemes. Tracking gold nanoparticles as non-blinking inelastic scatterers rendered a position uncertainty <0.4 nm3 in volume at a localization frequency of 2.9 kHz. We harnessed the record spatio-temporal precision of our 4Pi MINFLUX approach to examine the diffusion of single fluorophores and fluorescent nanobeads in solutions of sucrose in water, revealing local heterogeneities at the nanoscale. Our results show the applicability of 4Pi MINFLUX to study molecular nano-environments of diffusion and its potential for quantifying rapid movements of molecules in cells and other material composites.

3.
Science ; 379(6636): 1004-1010, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893244

RESUMEN

We introduce an interferometric MINFLUX microscope that records protein movements with up to 1.7 nanometer per millisecond spatiotemporal precision. Such precision has previously required attaching disproportionately large beads to the protein, but MINFLUX requires the detection of only about 20 photons from an approximately 1-nanometer-sized fluorophore. Therefore, we were able to study the stepping of the motor protein kinesin-1 on microtubules at up to physiological adenosine-5'-triphosphate (ATP) concentrations. We uncovered rotations of the stalk and the heads of load-free kinesin during stepping and showed that ATP is taken up with a single head bound to the microtubule and that ATP hydrolysis occurs when both heads are bound. Our results show that MINFLUX quantifies (sub)millisecond conformational changes of proteins with minimal disturbance.


Asunto(s)
Cinesinas , Microscopía Fluorescente , Adenosina Trifosfato/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Cinética , Microtúbulos/metabolismo , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Colorantes Fluorescentes , Movimiento (Física)
4.
J Microsc ; 288(2): 142-150, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36106606

RESUMEN

Fluorescence nanoscopy methods based on the RESOLFT principle, such as beam-scanning STED nanoscopy, require the co-alignment of optical beams for molecular state (on/off) switching and fluorescence excitation. The complexity and stability of the beam alignment can be drastically simplified and improved by using a single-mode fibre as the sole light source for all required laser beams. This in turn then requires a chromatic optical element for shaping the off-switching beam into a focal-plane donut while simultaneously leaving the focal intensity distributions at other wavelengths shaped as regular focal spots. Here we describe novel designs of such so-called 'easySTED phase plates' and provide a rationale how to find the desired spectral signature for combinations of multiple wavelengths.


Asunto(s)
Luz , Microscopía Fluorescente/métodos
5.
Cancer Res ; 81(8): 2234-2245, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33622696

RESUMEN

Targeted imaging and therapy approaches based on novel prostate-specific membrane antigen (PSMA) inhibitors have fundamentally changed the treatment regimen of prostate cancer. However, the exact mechanism of PSMA inhibitor internalization has not yet been studied, and the inhibitors' subcellular fate remains elusive. Here, we investigated the intracellular distribution of peptidomimetic PSMA inhibitors and of PSMA itself by stimulated emission depletion (STED) nanoscopy, applying a novel nonstandard live cell staining protocol. Imaging analysis confirmed PSMA cluster formation at the cell surface of prostate cancer cells and clathrin-dependent endocytosis of PSMA inhibitors. Following the endosomal pathway, PSMA inhibitors accumulated in prostate cancer cells at clinically relevant time points. In contrast with PSMA itself, PSMA inhibitors were found to eventually distribute homogeneously in the cytoplasm, a molecular condition that promises benefits for treatment as cytoplasmic and in particular perinuclear enrichment of the radionuclide carriers may better facilitate the radiation-mediated damage of cancerous cells. This study is the first to reveal the subcellular fate of PSMA/PSMA inhibitor complexes at the nanoscale and aims to inspire the development of new approaches in the field of prostate cancer research, diagnostics, and therapeutics. SIGNIFICANCE: This study uses STED fluorescence microscopy to reveal the subcellular fate of PSMA/PSMA inhibitor complexes near the molecular level, providing insights of great clinical interest and suggestive of advantageous targeted therapies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2234/F1.large.jpg.


Asunto(s)
Citoplasma/metabolismo , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Terapia Molecular Dirigida/métodos , Neoplasias de la Próstata/metabolismo , Animales , Antígenos de Superficie/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis , Endosomas/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Xenoinjertos , Humanos , Masculino , Ratones , Microscopía Fluorescente/métodos , Nanotecnología/métodos , Peptidomiméticos/farmacocinética , Peptidomiméticos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Coloración y Etiquetado
6.
Mol Cell ; 78(2): 236-249.e7, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32101700

RESUMEN

The formation of silenced and condensed heterochromatin foci involves enrichment of heterochromatin protein 1 (HP1). HP1 can bridge chromatin segments and form liquid droplets, but the biophysical principles underlying heterochromatin compartmentalization in the cell nucleus are elusive. Here, we assess mechanistically relevant features of pericentric heterochromatin compaction in mouse fibroblasts. We find that (1) HP1 has only a weak capacity to form liquid droplets in living cells; (2) the size, global accessibility, and compaction of heterochromatin foci are independent of HP1; (3) heterochromatin foci lack a separated liquid HP1 pool; and (4) heterochromatin compaction can toggle between two "digital" states depending on the presence of a strong transcriptional activator. These findings indicate that heterochromatin foci resemble collapsed polymer globules that are percolated with the same nucleoplasmic liquid as the surrounding euchromatin, which has implications for our understanding of chromatin compartmentalization and its functional consequences.


Asunto(s)
Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Eucromatina/genética , Heterocromatina/genética , Animales , Homólogo de la Proteína Chromobox 5 , Fibroblastos , Ratones
7.
Proc Natl Acad Sci U S A ; 115(34): E8047-E8056, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30082388

RESUMEN

Extending superresolution fluorescence microscopy to living animals has remained a challenging frontier ever since the first demonstration of STED (stimulated emission depletion) nanoscopy in the mouse visual cortex. The use of fluorescent proteins (FPs) in in vivo STED analyses has been limiting available fluorescence photon budgets and attainable image contrasts, in particular for far-red FPs. This has so far precluded the definition of subtle details in protein arrangements at sufficient signal-to-noise ratio. Furthermore, imaging with longer wavelengths holds promise for reducing photostress. Here, we demonstrate that a strategy based on enzymatic self-labeling of the HaloTag fusion protein by high-performance synthetic fluorophore labels provides a robust avenue to superior in vivo analysis with STED nanoscopy in the far-red spectral range. We illustrate our approach by mapping the nanoscale distributions of the abundant scaffolding protein PSD95 at the postsynaptic membrane of excitatory synapses in living mice. With silicon-rhodamine as the reporter fluorophore, we present imaging with high contrast and low background down to ∼70-nm lateral resolution in the visual cortex at ≤25-µm depth. This approach allowed us to identify and characterize the diversity of PSD95 scaffolds in vivo. Besides small round/ovoid shapes, a substantial fraction of scaffolds exhibited a much more complex spatial organization. This highly inhomogeneous, spatially extended PSD95 distribution within the disk-like postsynaptic density, featuring intricate perforations, has not been highlighted in cell- or tissue-culture experiments. Importantly, covisualization of the corresponding spine morphologies enabled us to contextualize the diverse PSD95 patterns within synapses of different orientations and sizes.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/metabolismo , Proteínas Luminiscentes/metabolismo , Imagen Óptica/métodos , Coloración y Etiquetado/métodos , Sinapsis/metabolismo , Corteza Visual , Animales , Homólogo 4 de la Proteína Discs Large/genética , Proteínas Luminiscentes/genética , Ratones , Sinapsis/genética , Corteza Visual/citología , Corteza Visual/metabolismo , Proteína Fluorescente Roja
8.
Proc Natl Acad Sci U S A ; 115(10): E2246-E2253, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463719

RESUMEN

The centrosome linker proteins C-Nap1, rootletin, and CEP68 connect the two centrosomes of a cell during interphase into one microtubule-organizing center. This coupling is important for cell migration, cilia formation, and timing of mitotic spindle formation. Very little is known about the structure of the centrosome linker. Here, we used stimulated emission depletion (STED) microscopy to show that each C-Nap1 ring at the proximal end of the two centrioles organizes a rootletin ring and, in addition, multiple rootletin/CEP68 fibers. Rootletin/CEP68 fibers originating from the two centrosomes form a web-like, interdigitating network, explaining the flexible nature of the centrosome linker. The rootletin/CEP68 filaments are repetitive and highly ordered. Staggered rootletin molecules (N-to-N and C-to-C) within the filaments are 75 nm apart. Rootletin binds CEP68 via its C-terminal spectrin repeat-containing region in 75-nm intervals. The N-to-C distance of two rootletin molecules is ∼35 to 40 nm, leading to an estimated minimal rootletin length of ∼110 nm. CEP68 is important in forming rootletin filaments that branch off centrioles and to modulate the thickness of rootletin fibers. Thus, the centrosome linker consists of a vast network of repeating rootletin units with C-Nap1 as ring organizer and CEP68 as filament modulator.


Asunto(s)
Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas/metabolismo , Secuencias de Aminoácidos , Centriolos/química , Centriolos/genética , Centrosoma/química , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Células HeLa , Humanos , Interfase , Microscopía , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica , Proteínas/química , Proteínas/genética , ARNt Metiltransferasas
9.
Biomed Opt Express ; 8(3): 1390-1404, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28663836

RESUMEN

The chemical basis for the alteration of the refractive properties of an intraocular lens with a femtosecond laser was investigated. Three different microscope setups have been used for the study: Laser Induced Fluorescence (LIF) microscopy, Raman microscopy and coherent anti-Stokes Raman Scattering (CARS) microscopy. Photo-induced hydrolysis of polymeric material in aqueous media produces two hydrophilic functional groups: acid group and alcohol group. The spectral signatures identify two of the hydrophilic polar molecules as N-phenyl-4-(phenylazo)-benzenamine (C18H15N3) and phenazine-1-carboxylic acid (C13H8N2O2). The change in hydrophilicity results in a negative refractive index change in the laser-treated areas.

10.
Chemistry ; 23(50): 12114-12119, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370443

RESUMEN

Hydroxylated rhodamines, carbopyronines, silico- and germanorhodamines with absorption maxima in the range of 530-640 nm were prepared and applied in specific labeling of living cells. The direct and high-yielding entry to germa- and silaxanthones tolerates the presence of protected heteroatoms and may be considered for the syntheses of various sila- and germafluoresceins, as well as -rhodols. Application in stimulated emission depletion (STED) fluorescence microscopy revealed a resolution of 50-75 nm in one- and two-color imaging of vimentin-HaloTag fused protein and native tubulin. The established structure-property relationships allow for prediction of the spectral properties and the positions of spirolactone/zwitterion equilibria for the new analogues of rhodamines, carbo-, silico-, and germanorhodamines using simple additive schemes.

11.
ACS Nano ; 10(9): 8215-22, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27517329

RESUMEN

Concomitant with human immunodeficiency virus type 1 (HIV-1) budding from a host cell, cleavage of the structural Gag polyproteins by the viral protease (PR) triggers complete remodeling of virion architecture. This maturation process is essential for virus infectivity. Electron tomography provided structures of immature and mature HIV-1 with a diameter of 120-140 nm, but information about the sequence and dynamics of structural rearrangements is lacking. Here, we employed super-resolution STED (stimulated emission depletion) fluorescence nanoscopy of HIV-1 carrying labeled Gag to visualize the virion architecture. The incomplete Gag lattice of immature virions was clearly distinguishable from the condensed distribution of mature protein subunits. Synchronized activation of PR within purified particles by photocleavage of a caged PR inhibitor enabled time-resolved in situ observation of the induction of proteolysis and maturation by super-resolution microscopy. This study shows the rearrangement of subviral structures in a super-resolution light microscope over time, outwitting phototoxicity and fluorophore bleaching through synchronization of a biological process by an optical switch.


Asunto(s)
Tomografía con Microscopio Electrónico , VIH-1 , Proteolisis , Virión , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Infecciones por VIH , Humanos , Péptidos
12.
Proc Natl Acad Sci U S A ; 113(13): 3442-6, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26984498

RESUMEN

We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5-12-fold compared with their conventional diffraction-limited LS analogs.

13.
EMBO J ; 35(4): 389-401, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26783362

RESUMEN

Bax is a key regulator of apoptosis that, under cell stress, accumulates at mitochondria, where it oligomerizes to mediate the permeabilization of the mitochondrial outer membrane leading to cytochrome c release and cell death. However, the underlying mechanism behind Bax function remains poorly understood. Here, we studied the spatial organization of Bax in apoptotic cells using dual-color single-molecule localization-based super-resolution microscopy. We show that active Bax clustered into a broad distribution of distinct architectures, including full rings, as well as linear and arc-shaped oligomeric assemblies that localized in discrete foci along mitochondria. Remarkably, both rings and arcs assemblies of Bax perforated the membrane, as revealed by atomic force microscopy in lipid bilayers. Our data identify the supramolecular organization of Bax during apoptosis and support a molecular mechanism in which Bax fully or partially delineates pores of different sizes to permeabilize the mitochondrial outer membrane.


Asunto(s)
Apoptosis , Mitocondrias/enzimología , Membranas Mitocondriales/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Multimerización de Proteína , Proteína X Asociada a bcl-2/metabolismo , Citocromos c/metabolismo , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Membranas Mitocondriales/fisiología , Permeabilidad
14.
Opt Express ; 23(24): 30891-903, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698722

RESUMEN

Despite the need for isotropic optical resolution in a growing number of applications, the majority of super-resolution fluorescence microscopy setups still do not attain an axial resolution comparable to that in the lateral dimensions. Three-dimensional (3D) nanoscopy implementations that employ only a single objective lens typically feature a trade-off between axial and lateral resolution. 4Pi arrangements, in which the sample is illuminated coherently through two opposing lenses, have proven their potential for rendering the resolution isotropic. However, instrument complexity due to a large number of alignment parameters has so far thwarted the dissemination of this approach. Here, we present a 4Pi-STED setup combination, also called isoSTED nanoscope, where the STED and excitation beams are intrinsically co-aligned. A highly robust and convenient 4Pi cavity allows easy handling without the need for readjustments during imaging experiments.


Asunto(s)
Aumento de la Imagen/instrumentación , Lentes , Microscopía Fluorescente/instrumentación , Nanotecnología/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
15.
Nat Methods ; 12(9): 827-30, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26214129

RESUMEN

Electro-optical scanning (>1,000 frames/s) with pixel dwell times on the order of the lifetime of the fluorescent molecular state renders stimulated emission depletion (STED) nanoscopy temporally stochastic. Photon detection from a molecule occurs stochastically in one of several scanning frames, and the spatial origin of the photon is known with subdiffraction precision. Images are built up by binning consecutive frames, making the time resolution freely adjustable. We demonstrated nanoscopy of vesicle motions in living Drosophila larvae and the cellular uptake of viral particles with 5- to 10-ms temporal resolution.


Asunto(s)
Aumento de la Imagen/instrumentación , Sistemas Microelectromecánicos/instrumentación , Microscopía Fluorescente/instrumentación , Imagen Molecular/instrumentación , Nanotecnología/instrumentación , Fotometría/instrumentación , Interpretación Estadística de Datos , Diseño de Equipo , Análisis de Falla de Equipo , Procesos Estocásticos
16.
PLoS One ; 10(5): e0124650, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25993380

RESUMEN

In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/citología , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Neuronas/citología , 1-Propanol/química , Animales , Encéfalo/virología , Línea Celular , Cricetinae , Proteínas Fluorescentes Verdes , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/virología , Virus de la Rabia , Alcohol terc-Butílico/química
17.
Nat Commun ; 6: 7127, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25980788

RESUMEN

The widely popular class of quantum-dot molecular labels could so far not be utilized as standard fluorescent probes in STED (stimulated emission depletion) nanoscopy. This is because broad quantum-dot excitation spectra extend deeply into the spectral bands used for STED, thus compromising the transient fluorescence silencing required for attaining super-resolution. Here we report the discovery that STED nanoscopy of several red-emitting commercially available quantum dots is in fact successfully realized by the increasingly popular 775 nm STED laser light. A resolution of presently ∼ 50 nm is demonstrated for single quantum dots, and sub-diffraction resolution is further shown for imaging of quantum-dot-labelled vimentin filaments in fibroblasts. The high quantum-dot photostability enables repeated STED recordings with >1,000 frames. In addition, we have evidence that the tendency of quantum-dot labels to blink is largely suppressed by combined action of excitation and STED beams. Quantum-dot STED significantly expands the realm of application of STED nanoscopy, and, given the high stability of these probes, holds promise for extended time-lapse imaging.

18.
Opt Express ; 23(1): 211-23, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25835668

RESUMEN

Stimulated Emission Depletion (STED) nanoscopy enables multi-color fluorescence imaging at the nanometer scale. Its typical single-point scanning implementation can lead to long acquisition times. In order to unleash the full spatiotemporal resolution potential of STED nanoscopy, parallelized scanning is mandatory. Here we present a dual-color STED nanoscope utilizing two orthogonally crossed standing light waves as a fluorescence switch-off pattern, and providing a resolving power down to 30 nm. We demonstrate the imaging capabilities in a biological context for immunostained vimentin fibers in a circular field of view of 20 µm diameter at 2000-fold parallelization (i.e. 2000 "intensity minima"). The technical feasibility of massively parallelizing STED without significant compromises in resolution heralds video-rate STED nanoscopy of large fields of view, pending the availability of suitable high-speed detectors.

19.
Chemphyschem ; 15(11): 2331-6, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24753024

RESUMEN

Recent developments in biology demand an increasing number of simultaneously imaged structures with standard fluorescence microscopy. However, the number of multiplexed channels is limited for most multiplexing modalities, such as spectral multiplexing or fluorescence-lifetime imaging. We propose extending the number of imaging channels by using chemical reactions, controlling the emissive state of fluorescent dyes. As proof of concept, we reversibly switch a fluorescent copper sensor to enable successive imaging of two different structures in the same spectral channel. We also show that this chemical multiplexing is orthogonal to existing methods. By using two different dyes, we combine chemical with spectral multiplexing for the simultaneous imaging of four different structures with only two spectrally different channels. We characterize and discuss the approach and provide perspectives for extending imaging modalities in stimulated emission depletion microscopy, for which spectral multiplexing is technically demanding.


Asunto(s)
Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Color , Fluorescencia
20.
PLoS One ; 8(4): e62893, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658655

RESUMEN

The calyx of Held, a large glutamatergic terminal in the mammalian auditory brainstem has been extensively employed to study presynaptic structure and function in the central nervous system. Nevertheless, the nanoarchitecture of presynaptic proteins and subcellular components in the calyx terminal and its relation to functional properties of synaptic transmission is only poorly understood. Here, we use stimulated emission depletion (STED) nanoscopy of calyces in thin sections of aldehyde-fixed rat brain tissue to visualize immuno-labeled synaptic proteins including VGluT1, synaptophysin, Rab3A and synapsin with a lateral resolution of approximately 40 nm. Excitation multiplexing of suitable fluorescent dyes deciphered the spatial arrangement of the presynaptic phospho-protein synapsin relative to synaptic vesicles labeled with anti-VGluT1. Both predominantly occupied the same focal volume, yet may exist in exclusive domains containing either VGluT1 or synapsin immunoreactivity. While the latter have been observed with diffraction-limited fluorescence microscopy, STED microscopy for the first time revealed VGluT1-positive domains lacking synapsins. This observation supports the hypothesis that molecularly and structurally distinct synaptic vesicle pools operate in presynaptic nerve terminals.


Asunto(s)
Corteza Auditiva/ultraestructura , Terminales Presinápticos/ultraestructura , Transmisión Sináptica/fisiología , Vesículas Sinápticas/ultraestructura , Animales , Corteza Auditiva/metabolismo , Fijadores , Colorantes Fluorescentes , Expresión Génica , Microscopía Fluorescente/métodos , Microtomía , Fosforilación , Terminales Presinápticos/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsinas/genética , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína de Unión al GTP rab3A/genética , Proteína de Unión al GTP rab3A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA