Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Biol Chem ; 300(5): 107284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614208

RESUMEN

Receptor-mediated cellular uptake of specific ligands constitutes an important step in the dynamic regulation of individual protein levels in extracellular fluids. With a focus on the inflammatory lung, we here performed a proteomics-based search for novel ligands regulated by the mannose receptor (MR), a macrophage-expressed endocytic receptor. WT and MR-deficient mice were exposed to lipopolysaccharide, after which the protein content in their lung epithelial lining fluid was compared by tandem mass tag-based mass spectrometry. More than 1200 proteins were identified in the epithelial lining fluid using this unbiased approach, but only six showed a statistically different abundance. Among these, an unexpected potential new ligand, thrombospondin-4 (TSP-4), displayed a striking 17-fold increased abundance in the MR-deficient mice. Experiments using exogenous addition of TSP-4 to MR-transfected CHO cells or MR-positive alveolar macrophages confirmed that TSP-4 is a ligand for MR-dependent endocytosis. Similar studies revealed that the molecular interaction with TSP-4 depends on both the lectin activity and the fibronectin type-II domain of MR and that a closely related member of the TSP family, TSP-5, is also efficiently internalized by the receptor. This was unlike the other members of this protein family, including TSPs -1 and -2, which are ligands for a close MR homologue known as urokinase plasminogen activator receptor-associated protein. Our study shows that MR takes part in the regulation of TSP-4, an important inflammatory component in the injured lung, and that two closely related endocytic receptors, expressed on different cell types, undertake the selective endocytosis of distinct members of the TSP family.


Asunto(s)
Lectinas Tipo C , Lesión Pulmonar , Receptor de Manosa , Lectinas de Unión a Manosa , Proteómica , Receptores de Superficie Celular , Trombospondinas , Animales , Ratones , Células CHO , Cricetulus , Endocitosis , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Ligandos , Lipopolisacáridos/toxicidad , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/genética , Ratones Noqueados , Proteómica/métodos , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Trombospondinas/metabolismo , Trombospondinas/genética
2.
Cancers (Basel) ; 16(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275888

RESUMEN

Introduced almost two decades ago, ADCs have marked a breakthrough in the targeted therapy era, providing clinical benefits to many cancer patients. While the inherent complexity of this class of drugs has challenged their development and broad application, the experience gained from years of trials and errors and recent advances in construct design and delivery have led to an increased number of ADCs approved or in late clinical development in only five years. Target and payload diversification, along with novel conjugation and linker technologies, are at the forefront of next-generation ADC development, renewing hopes to broaden the scope of these targeted drugs to difficult-to-treat cancers and beyond. This review highlights recent trends in the ADC field, focusing on construct design and mechanism of action and their implications on ADCs' therapeutic profile. The evolution from conventional to innovative ADC formats will be illustrated, along with some of the current hurdles, including toxicity and drug resistance. Future directions to improve the design of next-generation ADCs will also be presented.

3.
Chem Commun (Camb) ; 59(47): 7240-7242, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222285

RESUMEN

We herein describe the cell-specific release of alcohol-containing payloads via a sulfatase-sensitive linker in antibody-drug conjugates (ADCs). The linker shows efficient sulfatase-mediated release and high stability in human and mouse plasma. In vitro evaluation demonstrates potent antigen dependent toxicity towards breast cancer cell lines.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Animales , Ratones , Humanos , Inmunoconjugados/farmacología , Etanol , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
4.
Dev Cell ; 58(12): 1106-1121.e7, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37148882

RESUMEN

The broad research use of organoids from high-grade serous ovarian cancer (HGSC) has been hampered by low culture success rates and limited availability of fresh tumor material. Here, we describe a method for generation and long-term expansion of HGSC organoids with efficacy markedly improved over previous reports (53% vs. 23%-38%). We established organoids from cryopreserved material, demonstrating the feasibility of using viably biobanked tissue for HGSC organoid derivation. Genomic, histologic, and single-cell transcriptomic analyses revealed that organoids recapitulated genetic and phenotypic features of original tumors. Organoid drug responses correlated with clinical treatment outcomes, although in a culture conditions-dependent manner and only in organoids maintained in human plasma-like medium (HPLM). Organoids from consenting patients are available to the research community through a public biobank and organoid genomic data are explorable through an interactive online tool. Taken together, this resource facilitates the application of HGSC organoids in basic and translational ovarian cancer research.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Organoides/patología , Genómica
5.
Matrix Biol ; 111: 307-328, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878760

RESUMEN

Thrombospondin-1 (TSP-1) is a matricellular protein with a multitude of functions in the pericellular and extracellular environment. We report a novel pathway for the regulation of extracellular TSP-1, governed by the endocytic collagen receptor, uPARAP (urokinase plasminogen activator receptor-associated protein; MRC2 gene product, also designated Endo180, CD280). First, using a novel proteomic approach for unbiased identification of ligands for endocytosis, we identify TSP-1 as a candidate ligand for specific uptake by uPARAP. We then show that uPARAP can efficiently internalize TSP-1 for lysosomal degradation, that this capability is not shared by other, closely related endocytic receptors and that uPARAP serves to regulate the extracellular levels of TSP-1 in vitro. Using wild type and uPARAP null mice, we also demonstrate uPARAP-mediated endocytosis of TSP-1 in dermal fibroblasts in vivo. Unlike other uPARAP ligands, the interaction with TSP-1 is sensitive to heparin and the responsible molecular motifs in uPARAP are overlapping, but not identical with those governing the interaction with collagens. Finally, we show that uPARAP can also mediate the endocytosis of TSP-2, a thrombospondin closely related to TSP-1, but not the more distantly related members of the same protein family, TSP-3, -4 and -5. These findings indicate that the role of uPARAP in ECM remodeling is not limited to the uptake of collagen for degradation but also includes an orchestrator function in the regulation of thrombospondins with numerous downstream effects. This is likely to be an important factor in the physiological and pathological roles of uPARAP in bone biology, fibrosis and cancer. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD031272.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Trombospondina 1/metabolismo , Animales , Colágeno/metabolismo , Endocitosis , Ligandos , Ratones , Ratones Noqueados , Proteómica , Trombospondina 1/genética
6.
Kidney Int ; 101(6): 1232-1250, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35276205

RESUMEN

The molecular circadian clock is an evolutionary adaptation to anticipate recurring changes in the environment and to coordinate variations in activity, metabolism and hormone secretion. Parathyroid hyperplasia in uremia is a significant clinical challenge. Here, we examined changes in the transcriptome of the murine parathyroid gland over 24 hours and found a rhythmic expression of parathyroid signature genes, such as Casr, Vdr, Fgfr1 and Gcm2. Overall, 1455 genes corresponding to 6.9% of all expressed genes had significant circadian rhythmicity. Biological pathway analysis indicated that the circadian clock system is essential for the regulation of parathyroid cell function. To study this, a novel mouse strain with parathyroid gland-specific knockdown of the core clock gene Bmal1 (PTHcre;Bmal1flox/flox) was created. Dampening of the parathyroid circadian clock rhythmicity was found in these knockdown mice, resulting in abrogated rhythmicity of regulators of parathyroid cell proliferation such as Sp1, Mafb, Gcm2 and Gata3, indicating circadian clock regulation of these genes. Furthermore, the knockdown resulted in downregulation of genes involved in mitochondrial function and synthesis of ATP. When superimposed by uremia, these PTHcre;Bmal1flox/flox mice had an increased parathyroid cell proliferative response, compared to wild type mice. Thus, our findings indicate a role of the internal parathyroid circadian clock in the development of parathyroid gland hyperplasia in uremia.


Asunto(s)
Relojes Circadianos , Uremia , Animales , Proliferación Celular , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica , Hiperplasia , Ratones , Glándulas Paratiroides , Uremia/genética
7.
Matrix Biol Plus ; 13: 100101, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35198964

RESUMEN

Increased remodeling of the extracellular matrix in malignant tumors has been shown to correlate with tumor aggressiveness and a poor prognosis. This remodeling involves degradation of the original extracellular matrix (ECM) and deposition of a new tumor-supporting ECM. The main constituent of the ECM is collagen and collagen turnover mainly occurs in a sequential manner, where initial proteolytic cleavage of the insoluble fibers is followed by cellular internalization of large well-defined collagen fragments for lysosomal degradation. However, despite extensive research in the field, a lack of consensus on which cell types within the tumor microenvironment express the involved proteases still exists. Furthermore, the relative contribution of different cell types to collagen internalization is not well-established. Here, we developed quantitative ex vivo collagen degradation assays and show that the proteases responsible for the initial collagen cleavage in two murine syngeneic tumor models are matrix metalloproteinases produced by cancer-associated fibroblasts and that collagen degradation fragments are endocytosed primarily by tumor-associated macrophages and cancer-associated fibroblasts from the tumor stroma. Using tumors from mannose receptor-deficient mice, we show that this receptor is essential for collagen-internalization by tumor-associated macrophages. Together, these findings identify the cell types responsible for the entire collagen degradation pathway, from initial cleavage to endocytosis of fragments for intracellular degradation.

8.
Oncogene ; 41(9): 1364-1375, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35017664

RESUMEN

The development of immune checkpoint inhibitors (ICI) marks an important breakthrough of cancer therapies in the past years. However, only a limited fraction of patients benefit from such treatments, prompting the search for immune modulating agents that can improve the therapeutic efficacy. The nonselective beta blocker, propranolol, which for decades has been prescribed for the treatment of cardiovascular conditions, has recently been used successfully to treat metastatic angiosarcoma. These results have led to an orphan drug designation by the European Medicines Agency for the treatment of soft tissue sarcomas. The anti-tumor effects of propranolol are suggested to involve the reduction of cancer cell proliferation as well as angiogenesis. Here, we show that oral administration of propranolol delays tumor progression of MCA205 fibrosarcoma model and MC38 colon cancer model and increases the survival rate of tumor bearing mice. Propranolol works by reducing tumor angiogenesis and facilitating an anti-tumoral microenvironment with increased T cell infiltration and reduced infiltration of myeloid-derived suppressor cells (MDSCs). Using T cell deficient mice, we demonstrate that the full anti-tumor effect of propranolol requires the presence of T cells. Flow cytometry-based analysis and RNA sequencing of FACS-sorted cells show that propranolol treatment leads to an upregulation of PD-L1 on tumor associated macrophages (TAMs) and changes in their chemokine expression profile. Lastly, we observe that the co-administration of propranolol significantly enhances the efficacy of anti-CTLA4 therapy. Our results identify propranolol as an immune modulating agent, which can improve immune checkpoint inhibitor therapies in soft tissue sarcoma patients and potentially in other cancers.


Asunto(s)
Antagonistas Adrenérgicos beta , Neoplasias , Microambiente Tumoral , Animales , Ratones , Antagonistas Adrenérgicos beta/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/tratamiento farmacológico , Propranolol/farmacología
9.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34768883

RESUMEN

Malignant mesothelioma (MM) is a highly aggressive cancer with limited therapeutic options. We have previously shown that the endocytic collagen receptor, uPARAP, is upregulated in certain cancers and can be therapeutically targeted. Public RNA expression data display uPARAP overexpression in MM. Thus, to evaluate its potential use in diagnostics and therapy, we quantified uPARAP expression by immunohistochemical H-score in formalin-fixed paraffin-embedded bioptic/surgical human tissue samples and tissue microarrays. We detected pronounced upregulation of uPARAP in the three main MM subtypes compared to non-malignant reactive mesothelial proliferations, with higher expression in sarcomatoid and biphasic than in epithelioid MM. The upregulation appeared to be independent of patients' asbestos exposure and unaffected after chemotherapy. Using immunoblotting, we demonstrated high expression of uPARAP in MM cell lines and no expression in a non-malignant mesothelial cell line. Moreover, we showed the specific internalization of an anti-uPARAP monoclonal antibody by the MM cell lines using flow cytometry-based assays and confocal microscopy. Finally, we demonstrated the sensitivity of these cells towards sub-nanomolar concentrations of an antibody-drug conjugate formed with the uPARAP-directed antibody and a potent cytotoxin that led to efficient, uPARAP-specific eradication of the MM cells. Further studies on patient cohorts and functional preclinical models will fully reveal whether uPARAP could be exploited in diagnostics and therapeutic targeting of MM.


Asunto(s)
Lectinas de Unión a Manosa/metabolismo , Glicoproteínas de Membrana/metabolismo , Mesotelioma Maligno/metabolismo , Receptores de Superficie Celular/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Femenino , Expresión Génica , Humanos , Inmunoconjugados/metabolismo , Masculino , Lectinas de Unión a Manosa/fisiología , Glicoproteínas de Membrana/fisiología , Mesotelioma Maligno/diagnóstico , Mesotelioma Maligno/fisiopatología , Persona de Mediana Edad , Receptores de Superficie Celular/fisiología , Receptores de Colágeno/genética , Receptores de Colágeno/metabolismo , Receptores de Colágeno/fisiología , Receptores Mitogénicos/genética , Transcriptoma , Regulación hacia Arriba
10.
Cancers (Basel) ; 13(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34771541

RESUMEN

One of the largest challenges to the implementation of precision oncology is identifying and validating selective tumor-driving targets to enhance the therapeutic efficacy while limiting off-target toxicity. In this context, the urokinase-type plasminogen activator receptor (uPAR) has progressively emerged as a promising therapeutic target in the management of aggressive malignancies. By focalizing the plasminogen activation cascade and subsequent extracellular proteolysis on the cell surface of migrating cells, uPAR endows malignant cells with a high proteolytic and migratory potential to dissolve the restraining extracellular matrix (ECM) barriers and metastasize to distant sites. uPAR is also assumed to choreograph multiple other neoplastic stages via a complex molecular interplay with distinct cancer-associated signaling pathways. Accordingly, high uPAR expression is observed in virtually all human cancers and is frequently associated with poor patient prognosis and survival. The promising therapeutic potential unveiled by the pleiotropic nature of this receptor has prompted the development of distinct targeted intervention strategies. The present review will focus on recently emerged cytotoxic approaches emphasizing the novel technologies and related limits hindering their application in the clinical setting. Finally, future research directions and emerging opportunities in the field of uPAR targeting are also discussed.

11.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202300

RESUMEN

Cancer-induced bone degradation is part of the pathological process associated with both primary bone cancers, such as osteosarcoma, and bone metastases originating from, e.g., breast, prostate, and colon carcinomas. Typically, this includes a cancer-dependent hijacking of processes also occurring during physiological bone remodeling, including osteoclast-mediated disruption of the inorganic bone component and collagenolysis. Extensive research has revealed the significance of osteoclast-mediated bone resorption throughout the course of disease for both primary and secondary bone cancer. Nevertheless, cancer cells representing both primary bone cancer and bone metastasis have also been implicated directly in bone degradation. We will present and discuss observations on the contribution of osteoclasts and cancer cells in cancer-associated bone degradation and reciprocal modulatory actions between these cells. The focus of this review is osteosarcoma, but we will also include relevant observations from studies of bone metastasis. Additionally, we propose a model for cancer-associated bone degradation that involves a collaboration between osteoclasts and cancer cells and in which both cell types may directly participate in the degradation process.


Asunto(s)
Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Resorción Ósea/etiología , Resorción Ósea/metabolismo , Comunicación Celular , Osteoclastos/metabolismo , Osteosarcoma/complicaciones , Osteosarcoma/patología , Animales , Neoplasias Óseas/diagnóstico por imagen , Remodelación Ósea , Resorción Ósea/diagnóstico , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Osteogénesis
12.
Gut Microbes ; 12(1): 1-14, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33274667

RESUMEN

The specific effects of administering live probiotics in the human gut are not well characterized. To this end, we investigated the immediate effect of Lactobacillus rhamnosus GG (LGG) in the jejunum of 27 healthy volunteers 2 h after ingestion using a combination of global RNA sequencing of human biopsies and bacterial DNA sequencing in a multi-visit, randomized, cross-over design (ClinicalTrials.gov number NCT03140878). While LGG was detectable in jejunum after 2 h in treated subjects, the gene expression response vs. placebo was subtle if assessed across all subjects. However, clustering analysis revealed that one-third of subjects exhibited a strong and consistent LGG response involving hundreds of genes, where genes related to B cell activation were upregulated, consistent with prior results in mice. Immunohistochemistry and single cell-based deconvolution analyses showed that this B cell signature likely is due to activation and proliferation of existing B cells rather than B cell immigration to the tissue. Our results indicate that the LGG strain has an immediate effect in the human gut in a subpopulation of individuals. In extension, our data strongly suggest that studies on in vivo probiotic effects in humans require large cohorts and must take individual variation into account.


Asunto(s)
Linfocitos B/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Yeyuno/inmunología , Yeyuno/microbiología , Lacticaseibacillus rhamnosus/inmunología , Probióticos/farmacología , Adulto , Estudios Cruzados , ADN Bacteriano/genética , Femenino , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Voluntarios Sanos , Humanos , Activación de Linfocitos/inmunología , Masculino , Factores Sexuales , Adulto Joven
13.
Sci Rep ; 10(1): 19138, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154487

RESUMEN

The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer. This disease is characterized by invasive tumor growth, leading to extensive bone destruction, and metastasis to the lungs. The tumor cells in human osteosarcoma display a strong expression of MT1-MMP, but the role of MT1-MMP in osteosarcoma progression is currently unknown. In this study, we investigated the role of MT1-MMP during various stages of osteosarcoma development. We utilized an optimized orthotopic murine osteosarcoma model and human osteosarcoma cells in which the MT1-MMP gene was knocked out using CRISPR/Cas9. We observed a strong expression of MT1-MMP in wildtype cells of both primary tumors and lung metastases, but, surprisingly, MT1-MMP deficiency did not affect primary tumor growth, bone degradation or the formation and growth of lung metastases. We therefore propose that, unlike findings reported in other cancers, tumor-expressed MT1-MMP is dispensable for all stages of osteosarcoma progression.


Asunto(s)
Neoplasias Óseas/genética , Huesos/patología , Proliferación Celular/genética , Neoplasias Pulmonares/genética , Metaloproteinasa 14 de la Matriz/genética , Osteosarcoma/genética , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Huesos/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Osteosarcoma/metabolismo , Osteosarcoma/secundario
14.
J Biol Chem ; 295(27): 9157-9170, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32424040

RESUMEN

C-type lectins that contain collagen-like domains are known as collectins. These proteins are present both in the circulation and in extravascular compartments and are central players of the innate immune system, contributing to first-line defenses against viral, bacterial, and fungal pathogens. The collectins mannose-binding lectin (MBL) and surfactant protein D (SP-D) are regulated by tissue fibroblasts at extravascular sites via an endocytic mechanism governed by urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180), which is also a collagen receptor. Here, we investigated the molecular mechanisms that drive the uPARAP-mediated cellular uptake of MBL and SP-D. We found that the uptake depends on residues within a protruding loop in the fibronectin type-II (FNII) domain of uPARAP that are also critical for collagen uptake. Importantly, however, we also identified FNII domain residues having an exclusive role in collectin uptake. We noted that these residues are absent in the related collagen receptor, the mannose receptor (MR or CD206), which consistently does not interact with collectins. We also show that the second C-type lectin-like domain (CTLD2) is critical for the uptake of SP-D, but not MBL, indicating an additional level of complexity in the interactions between collectins and uPARAP. Finally, we demonstrate that the same molecular mechanisms enable uPARAP to engage MBL immobilized on the surface of pathogens, thereby expanding the potential biological implications of this interaction. Our study reveals molecular details of the receptor-mediated cellular regulation of collectins and offers critical clues for future investigations into collectin biology and pathology.


Asunto(s)
Colectinas/metabolismo , Endocitosis/fisiología , Receptores Mitogénicos/genética , Animales , Células CHO , Proteínas Portadoras/metabolismo , Colágeno/metabolismo , Cricetulus , Fibroblastos/metabolismo , Células HEK293 , Humanos , Lectinas Tipo C , Receptor de Manosa , Lectina de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa , Glicoproteínas de Membrana/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Receptores de Superficie Celular , Receptores de Colágeno/metabolismo , Receptores Mitogénicos/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo
15.
Cell Mol Life Sci ; 77(16): 3161-3176, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32100084

RESUMEN

As the dominant constituent of the extracellular matrix (ECM), collagens of different types are critical for the structural properties of tissues and make up scaffolds for cellular adhesion and migration. Importantly, collagens also directly modulate the phenotypic state of cells by transmitting signals that influence proliferation, differentiation, polarization, survival, and more, to cells of mesenchymal, epithelial, or endothelial origin. Recently, the potential of collagens to provide immune regulatory signals has also been demonstrated, and it is believed that pathological changes in the ECM shape immune cell phenotype. Collagens are themselves heavily regulated by a multitude of structural modulations or by catabolic pathways. One of these pathways involves a cellular uptake of collagens or soluble collagen-like defense collagens of the innate immune system mediated by endocytic collagen receptors. This cellular uptake is followed by the degradation of collagens in lysosomes. The potential of this pathway to regulate collagens in pathological conditions is evident from the increased extracellular accumulation of both collagens and collagen-like defense collagens following endocytic collagen receptor ablation. Here, we review how endocytic collagen receptors regulate collagen turnover during physiological conditions and in pathological conditions, such as fibrosis and cancer. Furthermore, we highlight the potential of collagens to regulate immune cells and discuss how endocytic collagen receptors can directly regulate immune cell activity in pathological conditions or do it indirectly by altering the extracellular milieu. Finally, we discuss the potential collagen receptors utilized by immune cells to directly detect ECM-related changes in the tissues which they encounter.


Asunto(s)
Colágeno/inmunología , Animales , Endocitosis/inmunología , Matriz Extracelular/inmunología , Fibrosis/inmunología , Humanos , Neoplasias/inmunología
16.
J Immunother Cancer ; 7(1): 68, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30867051

RESUMEN

BACKGROUND: Tumor progression is accompanied by dramatic remodeling of the surrounding extracellular matrix leading to the formation of a tumor-specific ECM, which is often more collagen-rich and of increased stiffness. The altered ECM of the tumor supports cancer growth and metastasis, but it is unknown if this effect involves modulation of T cell activity. To investigate if a high-density tumor-specific ECM could influence the ability of T cells to kill cancer cells, we here studied how T cells respond to 3D culture in different collagen densities. METHODS: T cells cultured in 3D conditions surrounded by a high or low collagen density were imaged using confocal fluorescent microscopy. The effects of the different collagen densities on T cell proliferation, survival, and differentiation were examined using flow cytometry. Cancer cell proliferation in similar 3D conditions was also measured. Triple-negative breast cancer specimens were analyzed for the number of infiltrating CD8+ T cells and for the collagen density. Whole-transcriptome analyses were applied to investigate in detail the effects of collagen density on T cells. Computational analyses were used to identify transcription factors involved in the collagen density-induced gene regulation. Observed changes were confirmed by qRT-PCR analysis. RESULTS: T cell proliferation was significantly reduced in a high-density matrix compared to a low-density matrix and prolonged culture in a high-density matrix led to a higher ratio of CD4+ to CD8+ T cells. The proliferation of cancer cells was unaffected by the surrounding collagen-density. Consistently, we observed a reduction in the number of infiltrating CD8+ T-cells in mammary tumors with high collagen-density indicating that collagen-density has a role in regulating T cell abundance in human breast cancer. Whole-transcriptome analysis of 3D-cultured T cells revealed that a high-density matrix induces downregulation of cytotoxic activity markers and upregulation of regulatory T cell markers. These transcriptional changes were predicted to involve autocrine TGF-ß signaling and they were accompanied by an impaired ability of tumor-infiltrating T cells to kill autologous cancer cells. CONCLUSIONS: Our study identifies a new immune modulatory mechanism, which could be essential for suppression of T cell activity in the tumor microenvironment.


Asunto(s)
Colágeno/metabolismo , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Matriz Extracelular , Perfilación de la Expresión Génica , Humanos , Inmunomodulación , Activación de Linfocitos/genética , Linfocitos Infiltrantes de Tumor/patología , Neoplasias/patología , Microambiente Tumoral/genética
17.
Matrix Biol Plus ; 1: 100003, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33543002

RESUMEN

Macrophage plasticity, cellular origin, and phenotypic heterogeneity are perpetual challenges for studies addressing the biology of this pivotal immune cell in development, homeostasis, and tissue remodeling/repair. Consequently, a myriad of macrophage subtypes has been described in these contexts. To facilitate the identification of functional macrophage subtypes in vivo, here we used a flow cytometry-based assay that allows for detailed phenotyping of macrophages engaged in extracellular matrix (ECM) degradation. Of the five macrophage subtypes identified in the remodeling dermis by using this assay, collagen degradation was primarily executed by Ly6C - CCR2 + and Ly6C - CCR2 low macrophages via mannose receptor-dependent collagen endocytosis, while Ly6C + CCR2 + macrophages were the dominant fibrin-endocytosing cells. Unexpectedly, the CCL2/MCP1-CCR2 signaling axis was critical for both collagen and fibrin degradation, while collagen degradation was independent of IL-4Ra signaling. Furthermore, the cytokine GM-CSF selectively enhanced collagen degradation by Ly6C + CCR2 + macrophages. This study reveals distinct subsets of macrophages engaged in ECM turnover and identifies novel wound healing-associated functions for CCL2 and GM-CSF inflammatory cytokines.

18.
J Cell Biol ; 218(1): 333-349, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30366943

RESUMEN

Collectins such as mannose-binding lectin (MBL) and surfactant protein D (SP-D) become temporarily deposited in extravascular compartments after tissue injury and perform immune-stimulatory or inflammation-limiting functions. However, their turnover mechanisms, necessary to prevent excessive tissue damage, are virtually unknown. In this study, we show that fibroblasts in injured tissues undertake the clearance of collectins by using the endocytic collagen receptor uPARAP. In cellular assays, several types of collectins were endocytosed in a highly specific uPARAP-dependent process, not shared by the closely related receptor MR/CD206. When introduced into dermis or bleomycin-injured lungs of mice, collectins MBL and SP-D were endocytosed and routed for lysosomal degradation by uPARAP-positive fibroblasts. Fibroblast-specific expression of uPARAP governed endogenous SP-D levels and overall survival after lung injury. In lung tissue from idiopathic pulmonary fibrosis patients, a strong up-regulation of uPARAP was observed in fibroblasts adjacent to regions with SP-D secretion. This study demonstrates a novel immune-regulatory function of fibroblasts and identifies uPARAP as an endocytic receptor in immunity.


Asunto(s)
Fibroblastos/inmunología , Lesión Pulmonar/inmunología , Lectina de Unión a Manosa/inmunología , Lectinas de Unión a Manosa/inmunología , Glicoproteínas de Membrana/inmunología , Fibrosis Pulmonar/inmunología , Proteína D Asociada a Surfactante Pulmonar/inmunología , Receptores de Superficie Celular/inmunología , Animales , Bleomicina/administración & dosificación , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Endocitosis , Fibroblastos/patología , Expresión Génica , Humanos , Inmunidad Innata , Interleucina-6/genética , Interleucina-6/inmunología , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Pulmón/inmunología , Pulmón/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/mortalidad , Lisosomas/inmunología , Lisosomas/metabolismo , Receptor de Manosa , Lectina de Unión a Manosa/genética , Lectinas de Unión a Manosa/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteolisis , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/mortalidad , Proteína D Asociada a Surfactante Pulmonar/genética , Receptores de Superficie Celular/genética , Análisis de Supervivencia
19.
Nat Commun ; 9(1): 5178, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518756

RESUMEN

The development of new lymphatic vessels occurs in many cancerous and inflammatory diseases through the binding of VEGF-C to its receptors, VEGFR-2 and VEGFR-3. The regulation of VEGFR-2/VEGFR-3 heterodimerisation and its downstream signaling in lymphatic endothelial cells (LECs) remain poorly understood. Here, we identify the endocytic receptor, uPARAP, as a partner of VEGFR-2 and VEGFR-3 that regulates their heterodimerisation. Genetic ablation of uPARAP leads to hyperbranched lymphatic vasculatures in pathological conditions without affecting concomitant angiogenesis. In vitro, uPARAP controls LEC migration in response to VEGF-C but not VEGF-A or VEGF-CCys156Ser. uPARAP restricts VEGFR-2/VEGFR-3 heterodimerisation and subsequent VEGFR-2-mediated phosphorylation and inactivation of Crk-II adaptor. uPARAP promotes VEGFR-3 signaling through the Crk-II/JNK/paxillin/Rac1 pathway. Pharmacological Rac1 inhibition in uPARAP knockout mice restores the wild-type phenotype. In summary, our study identifies a molecular regulator of lymphangiogenesis, and uncovers novel molecular features of VEGFR-2/VEGFR-3 crosstalk and downstream signaling during VEGF-C-driven LEC sprouting in pathological conditions.


Asunto(s)
Linfangiogénesis , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular Tumoral , Dimerización , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Receptores de Superficie Celular/genética , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/química , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
20.
Gastroenterology ; 153(6): 1662-1673.e10, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28923495

RESUMEN

BACKGROUND & AIMS: Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver cancer that predominantly affects children and young adults with no underlying liver disease. A somatic, 400 Kb deletion on chromosome 19 that fuses part of the DnaJ heat shock protein family (Hsp40) member B1 gene (DNAJB1) to the protein kinase cAMP-activated catalytic subunit alpha gene (PRKACA) has been repeatedly identified in patients with FL-HCC. However, the DNAJB1-PRKACA gene fusion has not been shown to induce liver tumorigenesis. We used the CRISPR/Cas9 technique to delete in mice the syntenic region on chromosome 8 to create a Dnajb1-Prkaca fusion and monitored the mice for liver tumor development. METHODS: We delivered CRISPR/Cas9 vectors designed to juxtapose exon 1 of Dnajb1 with exon 2 of Prkaca to create the Dnajb1-Prkaca gene fusion associated with FL-HCC, or control Cas9 vector, via hydrodynamic tail vein injection to livers of 8-week-old female FVB/N mice. These mice did not have any other engineered genetic alterations and were not exposed to liver toxins or carcinogens. Liver tissues were collected 14 months after delivery; genomic DNA was analyzed by PCR to detect the Dnajb1-Prkaca fusion, and tissues were characterized by histology, immunohistochemistry, RNA sequencing, and whole-exome sequencing. RESULTS: Livers from 12 of the 15 mice given the vectors to induce the Dnajb1-Prkaca gene fusion, but none of the 11 mice given the control vector, developed neoplasms. The tumors contained the Dnajb1-Prkaca gene fusion and had histologic and cytologic features of human FL-HCCs: large polygonal cells with granular, eosinophilic, and mitochondria-rich cytoplasm, prominent nucleoli, and markers of hepatocytes and cholangiocytes. In comparing expression levels of genes between the mouse tumor and non-tumor liver cells, we identified changes similar to those detected in human FL-HCC, which included genes that affect cell cycle and mitosis regulation. Genomic analysis of mouse neoplasms induced by the Dnajb1-Prkaca fusion revealed a lack of mutations in genes commonly associated with liver cancers, as observed in human FL-HCC. CONCLUSIONS: Using CRISPR/Cas9 technology, we found generation of the Dnajb1-Prkaca fusion gene in wild-type mice to be sufficient to initiate formation of tumors that have many features of human FL-HCC. Strategies to block DNAJB1-PRKACA might be developed as therapeutics for this form of liver cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/genética , Transformación Celular Neoplásica/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Edición Génica/métodos , Fusión Génica , Proteínas del Choque Térmico HSP40/genética , Neoplasias Hepáticas/genética , Animales , Biomarcadores de Tumor/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas del Choque Térmico HSP40/metabolismo , Neoplasias Hepáticas/metabolismo , Ratones , Fenotipo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...