Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transfusion ; 62(11): 2200-2204, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36125237

RESUMEN

BACKGROUND AND OBJECTIVES: Photodynamic treatment with methylene blue (MB) and visible light is a well-established pathogen inactivation system for human plasma. This technique is routinely used in different countries. MB/light treatment was shown to inactivate several transfusion-transmittable viruses, but its efficiency for the inactivation of the quasi-enveloped hepatitis E virus (HEV) has not yet been investigated. MATERIALS AND METHODS: Plasma units were spiked with cell culture-derived HEV and treated with the THERAFLEX MB-Plasma system using various light doses (30, 60, 90, and 120 J/cm2 ). HEV titers in pre- and post-treatment samples were determined by virus titration and a large-volume plating assay to improve the detection limit of the virus assay. RESULTS: THERAFLEX MB-Plasma efficiently inactivated HEV in human plasma. Even the lowest light dose of 30 J/cm2 inactivated HEV down to the limit of detection, with a mean log reduction factor of greater than 2.4 for the total process. CONCLUSION: Our study demonstrates that the THERAFLEX MB-Plasma system effectively inactivates HEV in human plasma.


Asunto(s)
Virus de la Hepatitis E , Azul de Metileno , Humanos , Azul de Metileno/farmacología , Inactivación de Virus , Rayos Ultravioleta , Luz
2.
Viruses ; 14(7)2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35891381

RESUMEN

Equine hepacivirus (EqHV) is the closest known genetic homologue of hepatitis C virus. An effective prophylactic vaccine is currently not available for either of these hepaciviruses. The equine as potential surrogate model for hepacivirus vaccine studies was investigated, while equine host responses following vaccination with EqHV E2 recombinant protein and subsequent EqHV inoculation were elucidated. Four ponies received prime and booster vaccinations (recombinant protein, adjuvant) four weeks apart (day -55 and -27). Two control ponies received adjuvant only. Ponies were inoculated with EqHV RNA-positive plasma on day 0. Blood samples and liver biopsies were collected over 26 weeks (day -70 to +112). Serum analyses included detection of EqHV RNA, isotypes of E2-specific immunoglobulin G (IgG), nonstructural protein 3-specific IgG, haematology, serum biochemistry, and metabolomics. Liver tissue analyses included EqHV RNA detection, RNA sequencing, histopathology, immunohistochemistry, and fluorescent in situ hybridization. Al-though vaccination did not result in complete protective immunity against experimental EqHV inoculation, the majority of vaccinated ponies cleared the serum EqHV RNA earlier than the control ponies. The majority of vaccinated ponies appeared to recover from the EqHV-associated liver insult earlier than the control ponies. The equine model shows promise as a surrogate model for future hepacivirus vaccine research.


Asunto(s)
Hepacivirus , Enfermedades de los Caballos , Animales , Anticuerpos Antivirales , Hepacivirus/genética , Enfermedades de los Caballos/prevención & control , Caballos , Inmunoglobulina G , Hibridación Fluorescente in Situ , Filogenia , ARN , Vacunación/veterinaria , Vacunas Sintéticas/genética
3.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33658347

RESUMEN

Transcriptional profiling provides global snapshots of virus-mediated cellular reprogramming, which can simultaneously encompass pro- and antiviral components. To determine early transcriptional signatures associated with HCV infection of authentic target cells, we performed ex vivo infections of adult primary human hepatocytes (PHHs) from seven donors. Longitudinal sampling identified minimal gene dysregulation at six hours post infection (hpi). In contrast, at 72 hpi, massive increases in the breadth and magnitude of HCV-induced gene dysregulation were apparent, affecting gene classes associated with diverse biological processes. Comparison with HCV-induced transcriptional dysregulation in Huh-7.5 cells identified limited overlap between the two systems. Of note, in PHHs, HCV infection initiated broad upregulation of canonical interferon (IFN)-mediated defense programs, limiting viral RNA replication and abrogating virion release. We further find that constitutive expression of IRF1 in PHHs maintains a steady-state antiviral program in the absence of infection, which can additionally reduce HCV RNA translation and replication. We also detected infection-induced downregulation of ∼90 genes encoding components of the EIF2 translation initiation complex and ribosomal subunits in PHHs, consistent with a signature of translational shutoff. As HCV polyprotein translation occurs independently of the EIF2 complex, this process is likely pro-viral: only translation initiation of host transcripts is arrested. The combination of antiviral intrinsic and inducible immunity, balanced against pro-viral programs, including translational arrest, maintains HCV replication at a low-level in PHHs. This may ultimately keep HCV under the radar of extra-hepatocyte immune surveillance while initial infection is established, promoting tolerance, preventing clearance and facilitating progression to chronicity.IMPORTANCEAcute HCV infections are often asymptomatic and therefore frequently undiagnosed. We endeavored to recreate this understudied phase of HCV infection using explanted PHHs and monitored host responses to initial infection. We detected temporally distinct virus-induced perturbations in the transcriptional landscape, which were initially narrow but massively amplified in breadth and magnitude over time. At 72 hpi, we detected dysregulation of diverse gene programs, concurrently promoting both virus clearance and virus persistence. On the one hand, baseline expression of IRF1 combined with infection-induced upregulation of IFN-mediated effector genes suppresses virus propagation. On the other, we detect transcriptional signatures of host translational inhibition, which likely reduces processing of IFN-regulated gene transcripts and facilitates virus survival. Together, our data provide important insights into constitutive and virus-induced transcriptional programs in PHHs, and identifies simultaneous antagonistic dysregulation of pro-and anti-viral programs which may facilitate host tolerance and promote viral persistence.

4.
Sci Adv ; 6(45)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33148654

RESUMEN

Hepatitis C virus (HCV) has no animal reservoir, infecting only humans. To investigate species barrier determinants limiting infection of rodents, murine liver complementary DNA library screening was performed, identifying transmembrane proteins Cd302 and Cr1l as potent restrictors of HCV propagation. Combined ectopic expression in human hepatoma cells impeded HCV uptake and cooperatively mediated transcriptional dysregulation of a noncanonical program of immunity genes. Murine hepatocyte expression of both factors was constitutive and not interferon inducible, while differences in liver expression and the ability to restrict HCV were observed between the murine orthologs and their human counterparts. Genetic ablation of endogenous Cd302 expression in human HCV entry factor transgenic mice increased hepatocyte permissiveness for an adapted HCV strain and dysregulated expression of metabolic process and host defense genes. These findings highlight human-mouse differences in liver-intrinsic antiviral immunity and facilitate the development of next-generation murine models for preclinical testing of HCV vaccine candidates.


Asunto(s)
Hepacivirus , Hepatitis C , Animales , Hepacivirus/genética , Ratones , Ratones Transgénicos , Internalización del Virus
5.
J Hepatol ; 73(3): 549-558, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32294532

RESUMEN

BACKGROUND & AIMS: HCV is a positive-strand RNA virus that primarily infects human hepatocytes. Recent studies have reported that C19orf66 is expressed as an interferon (IFN)-stimulated gene; however, the intrinsic regulation of this gene within the liver as well as its antiviral effects against HCV remain elusive. METHODS: Expression of C19orf66 was quantified in both liver biopsies and primary human hepatocytes, with or without HCV infection. Mechanistic studies of the potent anti-HCV phenotype mediated by C19orf66 were conducted using state-of-the-art virological, biochemical and genetic approaches, as well as correlative light and electron microscopy and transcriptome and proteome analysis. RESULTS: Upregulation of C19orf66 mRNA was observed in both primary human hepatocytes upon HCV infection and in the livers of patients with chronic hepatitis C (CHC). In addition, pegIFNα/ribavirin therapy induced C19orf66 expression in patients with CHC. Transcriptomic profiling and whole cell proteomics of hepatoma cells ectopically expressing C19orf66 revealed no induction of other antiviral genes. Expression of C19orf66 restricted HCV infection, whereas CRIPSPR/Cas9 mediated knockout of C19orf66 attenuated IFN-mediated suppression of HCV replication. Co-immunoprecipitation followed by mass spectrometry identified a stress granule protein-dominated interactome of C19orf66. Studies with subgenomic HCV replicons and an expression system revealed that C19orf66 expression impairs HCV-induced elevation of phosphatidylinositol-4-phosphate, alters the morphology of the viral replication organelle (termed the membranous web) and thereby targets viral RNA replication. CONCLUSION: C19orf66 is an IFN-stimulated gene, which is upregulated in hepatocytes within the first hours post IFN treatment or HCV infection in vivo. The encoded protein possesses specific antiviral activity against HCV and targets the formation of the membranous web. Our study identifies C19orf66 as an IFN-inducible restriction factor with a novel antiviral mechanism that specifically targets HCV replication. LAY SUMMARY: Interferon-stimulated genes are thought to be important to for antiviral immune responses to HCV. Herein, we analysed C19orf66, an interferon-stimulated gene, which appears to inhibit HCV replication. It prevents the HCV-induced elevation of phosphatidylinositol-4-phosphate and alters the morphology of HCV's replication organelle.


Asunto(s)
Antivirales/uso terapéutico , Hepacivirus/genética , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/metabolismo , Interferones/uso terapéutico , Orgánulos/virología , Proteínas de Unión al ARN/metabolismo , Compartimentos de Replicación Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Adulto , Línea Celular Tumoral , Femenino , Técnicas de Inactivación de Genes , Genotipo , Células HEK293 , Hepatitis C Crónica/patología , Hepatitis C Crónica/virología , Hepatocitos/metabolismo , Humanos , Hígado/patología , Masculino , Persona de Mediana Edad , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Replicón/efectos de los fármacos , Replicón/genética , Ribavirina/uso terapéutico , Resultado del Tratamiento , Replicación Viral/genética
6.
Proc Natl Acad Sci U S A ; 117(3): 1731-1741, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31896581

RESUMEN

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and the leading cause for acute viral hepatitis worldwide. The virus is classified as a member of the genus Orthohepevirus A within the Hepeviridae family. Due to the absence of a robust cell culture model for HEV infection, the analysis of the viral life cycle, the development of effective antivirals and a vaccine is severely limited. In this study, we established a protocol based on the HEV genotype 3 p6 (Kernow C-1) and the human hepatoma cell lines HepG2 and HepG2/C3A with different media conditions to produce intracellular HEV cell culture-derived particles (HEVcc) with viral titers between 105 and 106 FFU/mL. Viral titers could be further enhanced by an HEV variant harboring a mutation in the RNA-dependent RNA polymerase. These HEVcc particles were characterized in density gradients and allowed the trans-complementation of subgenomic reporter HEV replicons. In addition, in vitro produced intracellular-derived particles were infectious in liver-humanized mice with high RNA copy numbers detectable in serum and feces. Efficient infection of primary human and swine hepatocytes using the developed protocol could be observed and was inhibited by ribavirin. Finally, RNA sequencing studies of HEV-infected primary human hepatocytes demonstrated a temporally structured transcriptional defense response. In conclusion, this robust cell culture model of HEV infection provides a powerful tool for studying viral-host interactions that should facilitate the discovery of antiviral drugs for this important zoonotic pathogen.


Asunto(s)
Virus de la Hepatitis E/genética , Virus de la Hepatitis E/fisiología , Hepatitis E/metabolismo , Hepatocitos/virología , Animales , Antivirales/farmacología , Carcinoma Hepatocelular , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Genotipo , Células Hep G2 , Hepatitis E/virología , Virus de la Hepatitis E/efectos de los fármacos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Replicón , Ribavirina/metabolismo , Porcinos , Carga Viral , Replicación Viral
7.
Mar Drugs ; 17(11)2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31717405

RESUMEN

In order to minimize re-discovery of already known anti-infective compounds, we focused our screening approach on understudied, almost untapped marine environments including marine invertebrates and their associated bacteria. Therefore, two sea cucumber species, Holothuria leucospilota and Stichopus vastus, were collected from Lampung (Indonesia), and 127 bacterial strains were identified by partial 16S rRNA-gene sequencing analysis and compared with the NCBI database. In addition, the overall bacterial diversity from tissue samples of the sea cucumbers H. leucospilota and S. vastus was analyzed using the cultivation-independent Illumina MiSEQ analysis. Selected bacterial isolates were grown to high densities and the extracted biomass was tested against a selection of bacteria and fungi as well as the hepatitis C virus (HCV). Identification of putative bioactive bacterial-derived compounds were performed by analyzing the accurate mass of the precursor/parent ions (MS1) as well as product/daughter ions (MS2) using high resolution mass spectrometry (HRMS) analysis of all active fractions. With this attempt we were able to identify 23 putatively known and two previously unidentified precursor ions. Moreover, through 16S rRNA-gene sequencing we were able to identify putatively novel bacterial species from the phyla Actinobacteria, Proteobacteria and also Firmicutes. Our findings suggest that sea cucumbers like H. leucospilota and S. vastus are promising sources for the isolation of novel bacterial species that produce compounds with potentially high biotechnological potential.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/aislamiento & purificación , Holothuria/microbiología , Stichopus/microbiología , Animales , Antiinfecciosos/aislamiento & purificación , Bacterias/genética , Biomasa , Biotecnología , Indonesia , Espectrometría de Masas , ARN Ribosómico 16S/genética
8.
Antiviral Res ; 157: 151-158, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30036559

RESUMEN

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genus Orthohepevirus in the family Hepeviridae. HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients and type I interferon (IFN) has been evaluated in a few infected transplantation patients in vivo. However, no effective and specific treatments against HEV infections are currently available. In this study, we evaluated the natural compound silvestrol, isolated from the plant Aglaia foveolata, and known for its specific inhibition of the DEAD-box RNA helicase eIF4A in state-of-the-art HEV experimental model systems. Silvestrol blocked HEV replication of different subgenomic replicons in a dose-dependent manner at low nanomolar concentrations and acted additive to ribavirin (RBV). In addition, HEV p6-based full length replication and production of infectious particles was reduced in the presence of silvestrol. A pangenotypic effect of the compound was further demonstrated with primary isolates from four different human genotypes in HEV infection experiments of hepatocyte-like cells derived from human embryonic and induced pluripotent stem cells. In vivo, HEV RNA levels rapidly declined in the feces of treated mice while no effect was observed in the vehicle treated control animals. In conclusion, silvestrol could be identified as pangenotypic HEV replication inhibitor in vitro with additive effect to RBV and further demonstrated high potency in vivo. The compound therefore may be considered in future treatment strategies of chronic hepatitis E in immunocompromised patients.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis E/efectos de los fármacos , Hepatitis E/tratamiento farmacológico , Triterpenos/farmacología , Replicación Viral/efectos de los fármacos , Aglaia/química , Animales , Antivirales/administración & dosificación , Antivirales/aislamiento & purificación , Células Cultivadas , Modelos Animales de Enfermedad , Interacciones Farmacológicas , Heces/virología , Virus de la Hepatitis E/crecimiento & desarrollo , Humanos , Ratones , Ribavirina/farmacología , Triterpenos/administración & dosificación , Triterpenos/aislamiento & purificación , Carga Viral
9.
Hepatol Commun ; 2(2): 173-187, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29404525

RESUMEN

Hepatitis E virus (HEV) is a member of the genus Orthohepevirus in the family Hepeviridae and the causative agent of hepatitis E in humans. HEV is a major health problem in developing countries, causing mortality rates up to 25% in pregnant women. However, these cases are mainly reported for HEV genotype (gt)1, while gt3 infections are usually associated with subclinical courses of disease. The pathogenic mechanisms of adverse maternal and fetal outcome during pregnancy in HEV-infected pregnant women remain elusive. In this study, we observed that HEV is capable of completing the full viral life cycle in placental-derived cells (JEG-3). Following transfection of JEG-3 cells, HEV replication of both HEV gts could be observed. Furthermore, determination of extracellular and intracellular viral capsid levels, infectivity, and biophysical properties revealed production of HEV infectious particles with similar characteristics as in liver-derived cells. Viral entry was analyzed by infection of target cells and detection of either viral RNA or staining for viral capsid protein by immunofluorescence. HEV gt1 and gt3 were efficiently inhibited by ribavirin in placental as well as in human hepatoma cells. In contrast, interferon-α sensitivity was lower in the placental cells compared to liver cells for gt1 but not gt3 HEV. Simultaneous determination of interferon-stimulated gene expression levels demonstrated an efficient HEV-dependent restriction in JEG-3. Conclusion: We showed differential tissue-specific host responses to HEV genotypes, adding to our understanding of the mechanisms contributing to fatal outcomes of HEV infections during pregnancy. Using this cell-culture system, new therapeutic options for HEV during pregnancy can be identified and evaluated. (Hepatology Communications 2018;2:173-187).

10.
J Infect Dis ; 215(6): 902-906, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28453839

RESUMEN

The World Health Organization (WHO) published 2 alcohol-based formulations to be used in healthcare settings and for outbreak-associated infections, but inactivation efficacies of these products have not been determined against (re-)emerging viruses. In this study, we evaluated the virucidal activity of these WHO products in a comparative analysis. Zika virus (ZIKV), Ebola virus (EBOV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) as (re-)emerging viral pathogens and other enveloped viruses could be efficiently inactivated by both WHO formulations, implicating their use in healthcare systems and viral outbreak situations.


Asunto(s)
Antisepsia/métodos , Ebolavirus/efectos de los fármacos , Higiene de las Manos/normas , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Virus Zika/efectos de los fármacos , Infecciones por Coronavirus/prevención & control , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Guías de Práctica Clínica como Asunto , Análisis de Regresión , República de Corea , Síndrome Respiratorio Agudo Grave/prevención & control , Virulencia , Organización Mundial de la Salud , Infección por el Virus Zika/prevención & control
11.
Sci Rep ; 6: 36619, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27857152

RESUMEN

Hepatitis C virus (HCV) and human immunodeficiency virus (HIV-1) transmissions among people who inject drugs (PWID) continue to pose a challenging global health problem. Here, we aimed to analyse a universally applicable inactivation procedure, namely microwave irradiation, as a safe and effective method to reduce the risk of viral transmission. The exposure of HCV from different genotypes to microwave irradiation resulted in a significant reduction of viral infectivity. Furthermore, microwave irradiation reduced viral infectivity of HIV-1 and of HCV/HIV-1 suspensions indicating that this inactivation may be effective at preventing co-infections. To translate microwave irradiation as prevention method to used drug preparation equipment, we could further show that HCV as well as HIV-1 infectivity could be abrogated in syringes and filters. This study demonstrates the power of microwave irradiation for the reduction of viral transmission and establishment of this safety strategy could help reduce the transmission of blood-borne viruses.


Asunto(s)
Infecciones por VIH/prevención & control , VIH-1/efectos de la radiación , Hepacivirus/efectos de la radiación , Hepatitis C/prevención & control , Microondas , Abuso de Sustancias por Vía Intravenosa/complicaciones , Filtración/instrumentación , Genotipo , Infecciones por VIH/complicaciones , Infecciones por VIH/transmisión , VIH-1/patogenicidad , Hepacivirus/genética , Hepacivirus/patogenicidad , Hepatitis C/complicaciones , Hepatitis C/transmisión , Humanos
13.
J Clin Virol ; 80: 1-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27128354

RESUMEN

BACKGROUND AND OBJECTIVE: HCV is transmitted mainly by parenteral routes. However, unprotected anal intercourse has also been identified as a risk factor for HCV infection. HCV RNA can be detected in blood, saliva, and bile, but the presence of HCV in stool has not been investigated yet. STUDY DESIGN: Therefore, stool samples of 98 patients were collected prospectively. Specific HCV primers were used to identify samples positive for HCV RNA. HCV RNA-positive samples were tested for HCVcoreAg with the Architect HCVAg assay (Abbott). Presence of occult blood was investigated by the hemoCARE guajak test. Viral stability and infectivity of recombinant HCV particles was investigated in vitro by incubation of genotype 2a chimeric virus Jc1 with bile and stool suspensions. RESULTS: HCV RNA could be detected in 68 out of 98 stool samples from patients with chronic hepatitis C and 16 samples also tested positive for HCVcoreAg. Presence of HCV RNA in stool was more frequent in male than in female and in patients with low platelet counts but was not associated with the detection of occult blood. Stool suspensions and to a lesser extent bile reduced the in vitro infectivity of genotype 2a chimeric Jc1 virus even though infection of Huh7 cells was not completely abrogated. CONCLUSIONS: In summary, this study shows for the first time that HCV can frequently be detected in stool samples of chronically infected patients irrespective of occult bleeding. We suggest that stool can be a potential source for HCV infection and thus unprotected anal intercourse should be avoided.


Asunto(s)
Heces/virología , Hepacivirus/aislamiento & purificación , Antígenos de la Hepatitis C/aislamiento & purificación , Hepatitis C Crónica/virología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Hepacivirus/genética , Hepacivirus/metabolismo , Antígenos de la Hepatitis C/metabolismo , Hepatitis C Crónica/transmisión , Humanos , Masculino , Persona de Mediana Edad , Recuento de Plaquetas , Estudios Prospectivos , ARN Viral/genética , Factores Sexuales , Conducta Sexual
14.
Antimicrob Agents Chemother ; 60(4): 2132-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26787701

RESUMEN

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genusOrthohepevirusin the familyHepeviridae HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients, and type I interferon (IFN) has been evaluated in a few infected transplant patientsin vivo In this study, the antiviral effects of different exogenously administered interferons were investigated by using state-of-the-art subgenomic replicon and full-length HEV genome cell culture models. Hepatitis C virus (HCV) subgenomic replicons based on the genotype 2a JFH1 isolate served as the reference. The experiments revealed that HEV RNA replication was inhibited by the application of all types of IFN, including IFN-α (type I), IFN-γ (type II), and IFN-λ3 (type III), but to a far lesser extent than HCV replication. Simultaneous determination of interferon-stimulated gene (ISG) expression levels for all IFN types demonstrated efficient downregulation by HEV. Furthermore, different IFN-α subtypes were also able to block viral replication in combination with ribavirin. The IFN-α subtypes 2a and 2b exerted the strongest antiviral activity against HEV. In conclusion, these data demonstrate for the first time moderate anti-HEV activities of types II and III IFNs and different IFN-α subtypes. As HEV employed a potent anti-interferon mechanism by restricting ISG expression, exogenous application of IFNs as immunotherapy should be carefully assessed.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis E/efectos de los fármacos , Interferón-alfa/farmacología , Replicación Viral/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Línea Celular Tumoral , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Regulación de la Expresión Génica , Genotipo , Células Hep G2 , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Interacciones Huésped-Patógeno , Humanos , Interferón alfa-2 , Interferón gamma/farmacología , Interferones , Interleucinas/genética , Interleucinas/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteínas de Unión al ARN , Proteínas Recombinantes/farmacología , Replicón/efectos de los fármacos , Ribavirina/farmacología
15.
J Gen Virol ; 96(9): 2636-2642, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26041875

RESUMEN

The recent discovery of hepatitis C virus (HCV)-related viruses in different animal species has raised new speculations regarding the origin of HCV and the possibility of a zoonotic source responsible for the endemic HCV transmission. As a consequence, these new findings prompt questions regarding the potential for cross-species transmissions of hepaciviruses. The closest relatives to HCV discovered to date are the non-primate hepaciviruses (NPHVs), which have been described to infect horses. To evaluate the risk of a potential zoonotic transmission, we analysed NPHV RNA and antibodies in humans with occupational exposure to horses in comparison with a low-risk group. Both groups were negative for NPHV RNA, even though low seroreactivities against various NPHV antigens could be detected irrespective of the group. In conclusion, we did not observe evidence of NPHV transmission between horses and humans.


Asunto(s)
Enfermedades de los Trabajadores Agrícolas/virología , Hepacivirus/fisiología , Hepatitis C/veterinaria , Hepatitis C/virología , Enfermedades de los Caballos/virología , Zoonosis/transmisión , Adulto , Animales , Femenino , Hepacivirus/clasificación , Hepacivirus/genética , Hepatitis C/transmisión , Enfermedades de los Caballos/transmisión , Caballos , Humanos , Masculino , Persona de Mediana Edad , Exposición Profesional , Filogenia , Zoonosis/virología
16.
Hepatology ; 62(3): 702-14, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25999047

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) is a positive-strand RNA virus that primarily infects human hepatocytes. Infections with HCV constitute a global health problem, with 180 million people currently chronically infected. Recent studies have reported that cholesterol 25-hydroxylase (CH25H) is expressed as an interferon-stimulated gene and mediates antiviral activities against different enveloped viruses through the production of 25-hydroxycholesterol (25HC). However, the intrinsic regulation of human CH25H (hCH25H) expression within the liver as well as its mechanistic effects on HCV infectivity remain elusive. In this study, we characterized the expression of hCH25H using liver biopsies and primary human hepatocytes. In addition, the antiviral properties of this protein and its enzymatic product, 25HC, were further characterized against HCV in tissue culture. Levels of hCH25H messenger RNA were significantly up-regulated both in HCV-positive liver biopsies and in HCV-infected primary human hepatocytes. The expression of hCH25H in primary human hepatocytes was primarily and transiently induced by type I interferon. Transient expression of hCH25H in human hepatoma cells restricted HCV infection in a genotype-independent manner. This inhibition required the enzymatic activity of CH25H. We observed an inhibition of viral membrane fusion during the entry process by 25HC, which was not due to a virucidal effect. Yet the primary effect by 25HC on HCV was at the level of RNA replication, which was observed using subgenomic replicons of two different genotypes. Further analysis using electron microscopy revealed that 25HC inhibited formation of the membranous web, the HCV replication factory, independent of RNA replication. CONCLUSION: Infection with HCV causes up-regulation of interferon-inducible CH25H in vivo, and its product, 25HC, restricts HCV primarily at the level of RNA replication by preventing formation of the viral replication factory.


Asunto(s)
Hepacivirus/genética , Interferones/farmacología , Esteroide Hidroxilasas/genética , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Biopsia con Aguja , Células Cultivadas , Replicación del ADN/efectos de los fármacos , Regulación Viral de la Expresión Génica , Hepatitis C Crónica/patología , Hepatocitos/metabolismo , Humanos , Sensibilidad y Especificidad , Regulación hacia Arriba/efectos de los fármacos
17.
Water Environ Res ; 81(5): 476-85, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19472939

RESUMEN

The anaerobic biodegradability of municipal primary sludge, thickened waste activated sludge (TWAS), and fat, oil, and grease (FOG) was assessed using semi-continuous-feed, laboratory-scale anaerobic digesters and compared with the ultimate degradability obtained from 120-day batch digestion at 35 degrees C. In run 1, combined primary sludge and TWAS (40/60%, volatile solids [VS] basis) were fed to digesters operated at mesophilic (35 degrees C) and thermophilic (52 degrees C) temperatures at loading rates of 0.99 and 1.46 g-VS/L x d for primary sludge and TWAS, respectively, and a hydraulic retention time (HRT) of 12 days. The volatile solids destruction values were 25.3 and 30.7% (69 and 83% biodegradable volatile solids destruction) at 35 degrees C and 52 degrees C, respectively. The methane (CH4) yields were 159 and 197 mL at the standard temperature and pressure (STP) conditions of 0 degree C and 1 atm/g-VS added or 632 and 642 mL @ STP/g-VS destroyed at 35 degrees C and 52 degrees C, respectively. In run 2, a mix of primary sludge, TWAS, and FOG (21/31/48%, volatile solids basis) was fed to an acid digester operated at a 1-day HRT, at 35 degrees C, and a loading rate of 52.5 g-VS/L x d. The acid-reactor effluent was fed to two parallel methane-phase reactors operated at an HRT of 12 days and maintained at 35 degrees C and 52 degrees C, respectively. After an initial period of 20 days with near-zero gas production in the acid reactor, biogas production increased and stabilized to approximately 2 mL CH4 @ STP/g-VS added, corresponding to a volatile solids destruction of 0.4%. The acid-phase reactor achieved a 43% decrease in nonsaturated fat and a 16, 26, and 20% increase of soluble COD, volatile fatty acids, and ammonia, respectively. The methane-phase volatile solids destruction values in run 2 were 45 and 51% (85 and 97% biodegradable volatile solids destruction) at 35 degrees C and 52 degrees C, respectively. The methane yields for the methane-phase reactors were 473 and 551 mL @ STP/g-VS added, which is approximately 3 times larger compared with run 1, or 1040 and 1083 mL @ STP/g-VS destroyed, at 35 degrees C and 52 degrees C, respectively. The results indicate that, when co-digesting municipal sludge and FOG, a large FOG organic load fraction could have a profound effect on the methane gas yield.


Asunto(s)
Bacterias Anaerobias/metabolismo , Grasas/metabolismo , Aceites/metabolismo , Aguas del Alcantarillado/microbiología , Biodegradación Ambiental , Reactores Biológicos , Concentración de Iones de Hidrógeno , Aguas del Alcantarillado/química
18.
Water Environ Res ; 80(3): 212-21, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18419009

RESUMEN

The anaerobic biodegradability of municipal primary and secondary sludge with increasing levels of partially dewatered fat, oil, and grease (FOG) was assessed using a mixed methanogenic culture at 35 "C. Under batch conditions with an acclimated and enriched microbial population, the sludge loading was 3 kg volatile solids/m3 and the highest FOG loading tested was 1.5 kg volatile solids/m3, resulting in a methane yield of 245 mL methane/g sludge volatile solids added at 35 degrees C and 1010 mL methane/g FOG volatile solids added at 35 degrees C. Under semicontinuous feeding conditions, the sludge and sludge plus FOG loading tested were 3 and 3.75 kg volatile solids/m3-d, respectively. Within 23 days of operation, the volatile fatty acid concentrations were reduced below 200 mg chemical oxygen demand/L (187 mg/L as acetic acid). Enhancement of sludge digestion was observed in those reactors where codigestion of sludge and FOG took place, which was attributed to a higher level of microbial activity maintained in these reactors as a result of FOG degradation. The results of this study demonstrate that beneficial use of FOG through codigestion with municipal sludge is feasible.


Asunto(s)
Anaerobiosis , Metabolismo de los Lípidos , Aguas del Alcantarillado , Purificación del Agua/métodos , Biodegradación Ambiental , Reactores Biológicos , Ácidos Grasos/metabolismo , Humanos , Metano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...