Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(46): 10442-10449, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37962022

RESUMEN

On-surface synthesis has emerged as an attractive method for the atomically precise synthesis of new molecular nanostructures, being complementary to the widespread approach based on solution chemistry. It has been particularly successful in the synthesis of graphene nanoribbons and nanographenes. In both cases, the target compound is often generated through cyclodehydrogenation reactions, leading to planarization and the formation of hexagonal rings. To improve the flexibility and tunability of molecular units, however, the incorporation of other, nonbenzenoid, subunits is highly desirable. In this letter, we thoroughly analyze sequential cyclodehydrogenation reactions with a custom-designed molecular precursor. We demonstrate the step-by-step formation of hexagonal and pentagonal rings from the nonplanar precursor within fjord and cove regions, respectively. Computer models comprehensively support the experimental observations, revealing that both reactions imply an initial hydrogen abstraction and a final [1,2] hydrogen shift, but the formation of a pentagonal ring proceeds through a radical mechanism.

2.
ACS Nano ; 17(3): 2580-2587, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36692226

RESUMEN

The formation of two types of nanographenes from custom designed and synthesized molecular precursors has been achieved through thermally induced intramolecular cyclodehydrogenation reactions on the semiconducting TiO2(110)-(1×1) surface, confirmed by the combination of high-resolution scanning tunneling microscopy (STM) and spectroscopy (STS) measurements, and corroborated by theoretical modeling. The application of this protocol on differently shaped molecular precursors demonstrates the ability to induce a highly efficient planarization reaction both within strained pentahelicenes as well as between vicinal phenyl rings. Additionally, by the combination of successive Ullmann-type polymerization and cyclodehydrogenation reactions, the archetypic 7-armchair graphene nanoribbons (7-AGNRs) have also been fabricated on the titanium dioxide surface from the standard 10,10'-dibromo-9,9'-bianthryl (DBBA) molecular precursors. These examples of the effective cyclodehydrogenative planarization processes provide perspectives for the rational design and synthesis of molecular nanostructures on semiconductors.

3.
J Vis Exp ; (169)2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749671

RESUMEN

On-surface synthesis has recently been regarded as a promising approach for the generation of new molecular structures. It has been particularly successful in the synthesis of graphene nanoribbons, nanographenes and intrinsically reactive and instable, yet attractive species. It is based on the combination of solution chemistry aimed at preparation of appropriate molecular precursors for further ultra-high vacuum surface assisted transformations. This approach also owes its success to an incredible development of characterization techniques, such as scanning tunneling/atomic force microscopy and related methods, which allow detailed, local characterization at atomic scale. While the surface-assisted synthesis can provide molecular nanostructures with outstanding precision, down to single atoms, it suffers from basing on metallic surfaces and often limited yield. Therefore, the extension of the approach away from metals and the struggle to increase productivity seem to be significant challenges toward wider applications. Herein, we demonstrate the on-surface synthesis approach for generation of non-planar nanographenes, which are synthesized through a combination of solution chemistry and sequential surface-assisted processes, together with the detailed characterization by scanning probe microscopy methods.


Asunto(s)
Grafito/química , Microscopía de Fuerza Atómica/métodos , Nanoestructuras/química , Monóxido de Carbono/química , Oro/química , Grafito/síntesis química , Hidrogenación , Nanoestructuras/ultraestructura , Porosidad , Soluciones , Análisis Espectral , Propiedades de Superficie , Vacio
4.
Beilstein J Nanotechnol ; 11: 821-828, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32551207

RESUMEN

The adsorption behavior of tin phthalocyanine (SnPc) molecules on rutile TiO2(110) was studied by scanning tunneling microscopy (STM). Low-temperature STM measurements of single molecules reveal the coexistence of two conformations of molecules on the TiO2 surface. Density functional theory-based simulations (DFT) indicate that the difference originates from the position of the tin atom protruding from the molecule plane. The irreversible switching of Sn-up molecules into the Sn-down conformation was observed either after sample annealing at 200 °C or as a result of tip-induced manipulation. Room-temperature measurements conducted for a coverage of close to a monolayer showed no tendency for molecular arrangement.

5.
Science ; 369(6503): 571-575, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32586951

RESUMEN

Atomically precise graphene nanoribbons (GNRs) attract great interest because of their highly tunable electronic, optical, and transport properties. However, on-surface synthesis of GNRs is typically based on metal surface-assisted chemical reactions, where metallic substrates strongly screen their designer electronic properties and limit further applications. Here, we present an on-surface synthesis approach to forming atomically precise GNRs directly on semiconducting metal oxide surfaces. The thermally triggered multistep transformations preprogrammed in our precursors' design rely on highly selective and sequential activations of carbon-bromine (C-Br) and carbon-fluorine (C-F) bonds and cyclodehydrogenation. The formation of planar armchair GNRs terminated by well-defined zigzag ends is confirmed by scanning tunneling microscopy and spectroscopy, which also reveal weak interaction between GNRs and the rutile titanium dioxide substrate.

6.
Chem Sci ; 10(43): 10143-10148, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32055368

RESUMEN

The synthesis of porous nanographenes is a challenging task for solution chemistry, and thus, on-surface synthesis provides an alternative approach. Here, we report the synthesis of a triporous nanographene with 102 sp2 carbon atoms by combining solution and surface chemistry. The carbon skeleton was obtained by Pd-catalyzed cyclotrimerization of arynes in solution, while planarization of the molecule was achieved through two hierarchically organized on-surface cyclodehydrogenation reactions, intra- and inter-blade. Remarkably, the three non-planar [14]annulene pores of this nanographene further evolved at higher temperatures showing interesting intra-porous on-surface reactivity.

7.
Chem Commun (Camb) ; 54(73): 10256-10259, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30141797

RESUMEN

A nanographene formed by the fusion of 22 benzene rings has been prepared by combining an in-solution Pd-catalyzed cycloaddition reaction and on-surface Au-promoted cyclodehydrogenation. The structure and electronic properties of the resulting three-fold symmetric C66H24 molecule have been characterized by scanning probe microscopy with atomic resolution and corroborated by theoretical modelling.

8.
Phys Chem Chem Phys ; 20(16): 11037-11046, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29648564

RESUMEN

Understanding the mechanisms involved in the covalent attachment of organic molecules to surfaces is a major challenge for nanotechnology and surface science. On the basis of classical organic chemistry mechanistic considerations, key issues such as selectivity and reactivity of the organic adsorbates could be rationalized and exploited for the design of molecular-scale circuits and devices. Here we use tris(benzocyclobutadieno)triphenylene, a singular Y-shaped hydrocarbon containing antiaromatic cyclobutadienoid rings, as a molecular probe to study the reaction of polycyclic conjugated molecules with atomic scale moieties, dangling-bond (DB) dimers on a hydrogen-passivated Ge(001):H surface. By combining molecular design, synthesis, scanning tunneling microscopy and spectroscopy (STM/STS) and computational modeling, we show that the attachment involves a concerted [4+2] cycloaddition reaction that is completely site-selective and fully reversible. This selectivity, governed by the bond alternation induced by the presence of the cyclobutadienoid rings, allows for the control of the orientation of the molecules with respect to the surface DB-patterning. We also demonstrate that by judicious modification of the electronic levels of the polycyclic benzenoid through substituents, the reaction barrier height can be modified. Finally, we show that after deliberate tip-induced covalent bond cleavage, adsorbed molecules can be used to fine tune the electronic states of the DB dimer. This power to engineer deliberately the bonding configuration and electronic properties opens new perspectives for creating prototypical nanoscale circuitry.

10.
Phys Chem Chem Phys ; 18(28): 19309-17, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27375264

RESUMEN

Dangling bond (DB) arrays on Si(001):H and Ge(001):H surfaces can be patterned with atomic precision and they exhibit complex and rich physics making them interesting from both technological and fundamental perspectives. But their complex behavior often makes scanning tunneling microscopy (STM) images difficult to interpret and simulate. Recently it was shown that low-temperature imaging of unoccupied states of an unpassivated dimer on Ge(001):H results in a symmetric butterfly-like STM pattern, despite the fact that the equilibrium dimer configuration is expected to be a bistable, buckled geometry. Here, based on a thorough characterization of the low-bias switching events on Ge(001):H, we propose a new imaging model featuring a dynamical two-state rate equation. On both Si(001):H and Ge(001):H, this model allows us to reproduce the features of the observed symmetric empty-state images which strongly corroborates the idea that the patterns arise due to fast switching events and provides an insight into the relationship between the tunneling current and switching rates. We envision that our new imaging model can be applied to simulate other bistable systems where fluctuations arise from transiently charged electronic states.

11.
Phys Chem Chem Phys ; 18(25): 16757-65, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27271337

RESUMEN

Construction of single-molecule electronic devices requires the controlled manipulation of organic molecules and their properties. This could be achieved by tuning the interaction between the molecule and individual atoms by local "on-surface" chemistry, i.e., the controlled formation of chemical bonds between the species. We demonstrate here the reversible attachment of a planar conjugated polyaromatic molecule to a pair of unpassivated dangling bonds on a hydrogenated Ge(001):H surface via a Diels-Alder [4+2] addition using the tip of a scanning tunneling microscope (STM). Due to the small stability difference between the covalently bonded and a nearly undistorted structure attached to the dangling bond dimer by long-range dispersive forces, we show that at cryogenic temperatures the molecule can be switched between both configurations. The reversibility of this covalent bond forming reaction may be applied in the construction of complex circuits containing organic molecules with tunable properties.

12.
Phys Chem Chem Phys ; 18(5): 3854-61, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26766161

RESUMEN

Controlling the strength of the coupling between organic molecules and single atoms provides a powerful tool for tuning electronic properties of single-molecule devices. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) supported by theoretical modeling, we study the interaction of a planar organic molecule (trinaphthylene) with a hydrogen-passivated Ge(001):H substrate and a single dangling bond quantum dot on that surface. The electronic structure of the molecule adsorbed on the hydrogen-passivated surface is similar to the gas phase structure and the measurements show that HOMO and LUMO states contribute to the STM filled and empty state images, respectively. Furthermore, we show that the electronic properties are not significantly affected when the molecule is attached to the single dangling bond, which is in contrast with the strong interaction of the molecule with a dangling bond dimer. Our results show that the dangling bond quantum dots could stabilize organic molecules on a hydrogenated semiconductor without affecting their originally designed gas phase electronic properties. Together with the ability to laterally manipulate the molecules on the surface, this will be advantageous in the construction of single-molecule devices, where the coupling and positioning of the molecules on the substrate could be tuned by a proper design of the surface quantum dot arrays, comprising both single and dimerized dangling bonds.

13.
Sci Rep ; 5: 14496, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26404520

RESUMEN

We present a combined experimental and theoretical study of the electronic properties of close-spaced dangling-bond (DB) pairs in a hydrogen-passivated Si(001):H p-doped surface. Two types of DB pairs are considered, called "cross" and "line" structures. Our scanning tunneling spectroscopy (STS) data show that, although the spectra taken over different DBs in each pair exhibit a remarkable resemblance, they appear shifted by a constant energy that depends on the DB-pair type. This spontaneous asymmetry persists after repeated STS measurements. By comparison with density functional theory (DFT) calculations, we demonstrate that the magnitude of this shift and the relative position of the STS peaks can be explained by distinct charge states for each DB in the pair. We also explain how the charge state is modified by the presence of the scanning tunneling microscopy (STM) tip and the applied bias. Our results indicate that, using the STM tip, it is possible to control the charge state of individual DBs in complex structures, even if they are in close proximity. This observation might have important consequences for the design of electronic circuits and logic gates based on DBs in passivated silicon surfaces.

14.
J Cell Sci ; 118(Pt 15): 3445-57, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16079287

RESUMEN

Application of hydrodynamic mild shear stress to adherent Dictyostelium discoideum vegetative cells triggers active actin cytoskeleton remodeling resulting in net cell movement along the flow. The average cell speed is strongly stimulated by external calcium (Ca2+, K50%=22 microM), but the directionality of the movement is almost unaffected. This calcium concentration is ten times higher than the one promoting cell adhesion to glass surfaces (K50%=2 microM). Addition of the calcium chelator EGTA or the Ca2+-channel blocker gadolinium (Gd3+) transiently stops cell movement. Monitoring the evolution of cell-surface contact area with time reveals that calcium stimulates cell speed by increasing the amplitude of both protrusion and retraction events at the cell edge, but not the frequency. As a consequence, with saturating external calcium concentrations, cells are sensitive to very low shear forces (20 pN; sigma=0.1 Pa). Moreover, a null-mutant lacking the unique Gbeta subunit does not respond to external Ca2+ changes (K50%>1000 microM), although the directionality of the movement is comparable with that of wild-type cells. Furthermore, cells lacking the inositol 1,4,5-trisphosphate receptor (IP3-receptor) exhibit a markedly reduced Ca2+ sensitivity. Thus, calcium release from internal stores and calcium entry through the plasma membrane modulate cell speed in response to shear stress.


Asunto(s)
Calcio/metabolismo , Dictyostelium/metabolismo , Fluidez de la Membrana/fisiología , Actinas/química , Actinas/fisiología , Animales , Calcio/antagonistas & inhibidores , Calcio/farmacología , Adhesión Celular/fisiología , Línea Celular , Citoesqueleto/fisiología , Dictyostelium/química , Dictyostelium/citología , Relación Dosis-Respuesta a Droga , Ácido Egtácico/farmacología , Gadolinio/química , Gadolinio/farmacología , Vidrio , Fluidez de la Membrana/efectos de los fármacos , Modelos Químicos , Movimiento/efectos de los fármacos , Movimiento/fisiología , Sensibilidad y Especificidad , Resistencia al Corte , Propiedades de Superficie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...