Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ultramicroscopy ; 238: 113535, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35526315

RESUMEN

In this paper we perform angular resolved annular-dark field (ADF) scanning-transmission electron microscopy (STEM) to study the scattered intensity in an InGaN layer buried in GaN as a function of the scattering angle. We achieved angular resolution with a motorized iris aperture in front of the ADF detector. Using this setup, we investigated how the intensities measured in various angular ranges agree with multislice simulations in the frozen-lattice approximation. We observed a strong influence of relaxation induced surface-strain fields on the ADF intensity, measured its angular characteristics and compared the result with simulations. To assess the agreement of the measured intensity with simulations, we evaluated the specimen thickness in GaN and the indium concentration in InGaN for each angular interval by comparing the measured intensities with simulations. The thickness was strongly overestimated for scattering angles below 40mrad and also the evaluated indium concentration varies with the considered angular range. Using simulations, we investigated which angular ranges show a high sensitivity to variations of the thickness and which intervals strongly depend on the indium concentration. By combining two angular intervals, the indium concentration and the specimen thickness were determined simultaneously, which has potential advantages over the usual quantification method. It is shown that inelastic scattering, surface contamination and mistilt can have an influence on the measured intensity, especially at lower scattering angles below 30-50mrad, which might explain the observed difference between the frozen lattice simulation and the experiment.

2.
Ultramicroscopy ; 156: 29-36, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25978670

RESUMEN

The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.

3.
Ultramicroscopy ; 111(8): 1316-27, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21864772

RESUMEN

We suggest a method for chemical mapping that is based on scanning transmission electron microscopy (STEM) imaging with a high-angle annular dark field (HAADF) detector. The analysis method uses a comparison of intensity normalized with respect to the incident electron beam with intensity calculated employing the frozen lattice approximation. This procedure is validated with an In(0.07)Ga(0.93)N layer with homogeneous In concentration, where the STEM results were compared with energy filtered imaging, strain state analysis and energy dispersive X-ray analysis. Good agreement was obtained, if the frozen lattice simulations took into account static atomic displacements, caused by the different covalent radii of In and Ga atoms. Using a sample with higher In concentration and series of 32 images taken within 42 min scan time, we did not find any indication for formation of In rich regions due to electron beam irradiation, which is reported in literature to occur for the parallel illumination mode. Image simulation of an In(0.15)Ga(0.85)N layer that was elastically relaxed with empirical Stillinger-Weber potentials did not reveal significant impact of lattice plane bending on STEM images as well as on the evaluated In concentration profiles for specimen thicknesses of 5, 15 and 50 nm. Image simulation of an abrupt interface between GaN and In(0.15)Ga(0.85)N for specimen thicknesses up to 200 nm showed that artificial blurring of interfaces is significantly smaller than expected from a simple geometrical model that is based on the beam convergence only. As an application of the method, we give evidence for the existence of In rich regions in an InGaN layer which shows signatures of quantum dot emission in microphotoluminescence spectroscopy experiments.

4.
Ultramicroscopy ; 109(9): 1171-82, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19497670

RESUMEN

In scanning transmission electron microscopy using a high-angle annular dark field detector, image intensity strongly depends on specimen thickness and composition. In this paper we show that measurement of image intensities relative to the intensity of the incoming electron beam allows direct comparison with simulated image intensities, and thus quantitative measurement of specimen thickness and composition. Simulations were carried out with the frozen lattice and absorptive potential multislice methods. The radial inhomogeneity of the detector was measured and taken into account. Using a focused ion beam (FIB) prepared specimen we first demonstrate that specimen thicknesses obtained in this way are in very good agreement with a direct measurement of the thickness of the lamella by scanning electron microscopy in the FIB. In the second step we apply this method to evaluate the composition of Al(x)Ga(1-x)N/GaN layers. We measured ratios of image intensities obtained in regions with unknown and with known Al-concentration x, respectively. We show that estimation of the specimen thickness combined with evaluation of intensity ratios allows quantitative measurement of the composition x. In high-resolution images we find that the image intensity is well described by simulation if the simulated image is convoluted with a Gaussian with a half-width at half-maximum of 0.07 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA