Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Urol Oncol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38755094

RESUMEN

Current standard-of-care systemic therapy options for locally advanced and metastatic bladder cancer (BC), which are predominantly based on cisplatin-gemcitabine combinations, are limited by significant treatment failure rates and frailty-based patient ineligibility. We previously addressed the urgent clinical need for better-tolerated BC therapeutic strategies using a drug screening approach, which identified outstanding antineoplastic activity of clofarabine in preclinical models of BC. To further assess clofarabine as a potential BC therapy component, we conducted head-to-head comparisons of responses to clofarabine versus gemcitabine in preclinical in vitro and in vivo models of BC, complemented by in silico analyses. In vitro data suggest a distinct correlation between the two antimetabolites, with higher cytotoxicity of gemcitabine, especially against several nonmalignant cell types, including keratinocytes and endothelial cells. Accordingly, tolerance of clofarabine (oral or intraperitoneal application) was distinctly better than for gemcitabine (intraperitoneal) in patient-derived xenograft models of BC. Clofarabine also exhibited distinctly superior anticancer efficacy, even at dosing regimens optimized for gemcitabine. Neither complete remission nor cure, both of which were observed with clofarabine, were achieved with any tolerable gemcitabine regimen. Taken together, our findings demonstrate that clofarabine has a better therapeutic window than gemcitabine, further emphasizing its potential as a candidate for drug repurposing in BC. PATIENT SUMMARY: We compared the anticancer activity of clofarabine, a drug used for treatment of leukemia but not bladder cancer, and gemcitabine, a drug currently used for chemotherapy against bladder cancer. Using cell cultures and mouse models, we found that clofarabine was better tolerated and more efficacious than gemcitabine, and even cured implanted tumors in mouse models. Our results suggest that clofarabine, alone or in combination schemes, might be superior to gemcitabine for the treatment of bladder cancer.

2.
Curr Opin Urol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650456

RESUMEN

PURPOSE OF REVIEW: Current risk stratification and treatment decision-making for bladder cancer informed by histopathology as well as molecular diagnostics face limitations. This review summarizes recent advancements in single-cell and spatial omics methodologies for understanding bladder cancer biology and their potential impact on development of novel therapeutic strategies. RECENT FINDINGS: Single-cell RNA sequencing and spatial omics techniques offer unprecedented insights into various aspects of tumor microenvironment (TME), bladder cancer heterogeneity, cancer stemness, and cellular plasticity. Studies have identified multiple malignant cell subpopulations within tumors, revealing diverse transcriptional states and clonal evolution. Additionally, intratumor heterogeneity has been linked to tumor progression and therapeutic response. Immune cell composition analysis has revealed immunosuppressive features in the TME, impacting treatment response. Furthermore, studies have elucidated the role of cancer-associated fibroblasts and endothelial cells in shaping the tumor immune landscape and response to therapy. SUMMARY: Single-cell and spatial omics technologies have revolutionized our understanding of bladder cancer biology, uncovering previously unseen complexities. These methodologies provide valuable insights into tumor heterogeneity and microenvironmental interactions, with implications for therapeutic development. However, challenges remain in translating research findings into clinical practice and implementing personalized treatment strategies. Continued interdisciplinary collaboration and innovation are essential for overcoming these challenges and leveraging the full potential of single-cell and spatial omics in improving bladder cancer diagnosis and treatment.

3.
Curr Opin Urol ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602053

RESUMEN

PURPOSE OF REVIEW: Bladder cancer incidence is on the rise, and until recently, there has been little to no change in treatment regimens over the last 40 years. Hence, it is imperative to work on strategies and approaches to untangle the complexity of intra and inter-tumour heterogeneity of bladder cancer with the aim of improving patient-specific care and treatment outcomes. The focus of this review is therefore to highlight novel targets, advances, and therapy approaches for bladder cancer patients. RECENT FINDINGS: The success of combining an antibody-drug conjugate (ADC) with immunotherapy has been recently hailed as a game changer in treating bladder cancer patients. Hence, interest in other ADCs as a treatment option is also rife. Furthermore, strategies to overcome chemoresistance to standard therapy have been described recently. In addition, other studies showed that targeting genomic alterations (e.g. mutations in FGFR3, DNA damage repair genes and loss of the Y chromosome) could also be helpful as prognostic and treatment stratification biomarkers. The use of single-cell RNA sequencing approaches has allowed better characterisation of the tumour microenvironment and subsequent identification of novel targets. Personalized functional precision medicine could be another avenue to improve and guide personalized treatment options. SUMMARY: Several novel preclinical targets and treatment options have been described recently. The validation of these advances will lead to the development and implementation of robust personalized treatment regimens for bladder cancer patients.

4.
Curr Opin Urol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607277
5.
Acta Neuropathol ; 147(1): 23, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265527

RESUMEN

Posterior fossa type A (PF-EPN-A, PFA) ependymoma are aggressive tumors that mainly affect children and have a poor prognosis. Histopathology shows significant intratumoral heterogeneity, ranging from loose tissue to often sharply demarcated, extremely cell-dense tumor areas. To determine molecular differences in morphologically different areas and to understand their clinical significance, we analyzed 113 PF-EPN-A samples, including 40 corresponding relapse samples. Cell-dense areas ranged from 0 to 100% of the tumor area and displayed a higher proportion of proliferating tumor cells (p < 0.01). Clinically, cell density was associated with poor progression-free and overall survival (pPFS = 0.0026, pOS < 0.01). Molecularly, tumor areas with low and high cell density showed diverging DNA methylation profiles regarding their similarity to distinct previously discovered PF-EPN-A subtypes in 9/21 cases. Prognostically relevant chromosomal changes at 1q and 6q showed spatial heterogeneity within single tumors and were significantly enriched in cell-dense tumor areas as shown by single-cell RNA (scRNA)-sequencing as well as copy number profiling and fluorescence in situ hybridization (FISH) analyses of different tumor areas. Finally, spatial transcriptomics revealed cell-dense areas of different tumors to be more similar than various different areas of the same tumor. High-density areas distinctly overexpressed genes encoding histone proteins, WNT5A, TGFB1, or IGF2. Relapsing tumors displayed a higher proportion of cell-dense areas (p = 0.036), a change in PF-EPN-A methylation subtypes (13/32 patients), and novel chromosome 1q gains and 6q losses (12/32 cases) compared to corresponding primary tumors. Our data suggest that PF-EPN-A ependymomas habor a previously unrecognized intratumoral heterogeneity with clinical implications, which has to be accounted for when selecting diagnostic material, inter alia, by histological evaluation of the proportion of cell-dense areas.


Asunto(s)
Ependimoma , Recurrencia Local de Neoplasia , Niño , Humanos , Hibridación Fluorescente in Situ , Histonas , Perfilación de la Expresión Génica
7.
Cell Commun Signal ; 21(1): 307, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904178

RESUMEN

Bladder cells face a challenging biophysical environment: mechanical cues originating from urine flow and regular contraction to enable the filling voiding of the organ. To ensure functional adaption, bladder cells rely on high biomechanical compliance, nevertheless aging or chronic pathological conditions can modify this plasticity. Obviously the cytoskeletal network plays an essential role, however the contribution of other, closely entangled, intracellular organelles is currently underappreciated. The endoplasmic reticulum (ER) lies at a crucial crossroads, connected to both nucleus and cytoskeleton. Yet, its role in the maintenance of cell mechanical stability is less investigated. To start exploring these aspects, T24 bladder cancer cells were treated with the ER stress inducers brefeldin A (10-40nM BFA, 24 h) and thapsigargin (0.1-100nM TG, 24 h). Without impairment of cell motility and viability, BFA and TG triggered a significant subcellular redistribution of the ER; this was associated with a rearrangement of actin cytoskeleton. Additional inhibition of actin polymerization with cytochalasin D (100nM CytD) contributed to the spread of the ER toward cell periphery, and was accompanied by an increase of cellular stiffness (Young´s modulus) in the cytoplasmic compartment. Shrinking of the ER toward the nucleus (100nM TG, 2 h) was related to an increased stiffness in the nuclear and perinuclear areas. A similar short-term response profile was observed also in normal human primary bladder fibroblasts. In sum, the ER and its subcellular rearrangement seem to contribute to the mechanical properties of bladder cells opening new perspectives in the study of the related stress signaling cascades. Video Abstract.


Asunto(s)
Retículo Endoplásmico , Vejiga Urinaria , Humanos , Estrés del Retículo Endoplásmico , Citoesqueleto , Tapsigargina/farmacología
8.
Acta Neuropathol Commun ; 11(1): 25, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759899

RESUMEN

Globally decreased histone 3, lysine 27 tri-methylation (H3K27me3) is a hallmark of H3K27-altered diffuse midline gliomas (DMGs) and group-A posterior fossa ependymomas (PFAs). H3K27-altered DMGs are largely characterized by lysine-to-methionine mutations in histone 3 at position 27 (H3K27M). Most PFAs overexpress EZH inhibitory protein (EZHIP), which possesses a region of similarity to the mutant H3K27M. Both H3K27M and EZHIP inhibit the function of the polycomb repressive complex 2 (PRC2) responsible for H3K27me3 deposition. These tumors often arise in neighboring regions of the brainstem and posterior fossa. In rare cases PFAs harbor H3K27M mutations, and DMGs overexpress EZHIP. These findings together raise the possibility that certain cell populations in the developing hindbrain/posterior fossa are especially sensitive to modulation of H3K27me3 states. We identified shared molecular features by comparing genomic, bulk transcriptomic, chromatin-based profiles, and single-cell RNA-sequencing (scRNA-seq) data from the two tumor classes. Our approach demonstrated that 1q gain, a key biomarker in PFAs, is prognostic in H3.1K27M, but not H3.3K27M gliomas. Conversely, Activin A Receptor Type 1 (ACVR1), which is associated with mutations in H3.1K27M gliomas, is overexpressed in a subset of PFAs with poor outcome. Despite diffuse H3K27me3 reduction, previous work shows that both tumors maintain genomic H3K27me3 deposition at select sites. We demonstrate heterogeneity in shared patterns of residual H3K27me3 for both tumors that largely segregated with inferred anatomic tumor origins and progenitor populations of tumor cells. In contrast, analysis of genes linked to H3K27 acetylation (H3K27ac)-marked enhancers showed higher expression in astrocytic-like tumor cells. Finally, common H3K27me3-marked genes mapped closely to expression patterns in the human developing hindbrain. Overall, our data demonstrate developmentally relevant molecular similarities between PFAs and H3K27M DMGs and support the overall hypothesis that deregulated mechanisms of hindbrain development are central to the biology of both tumors.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Fluorocarburos , Glioma , Humanos , Histonas/genética , Histonas/metabolismo , Lisina/genética , Ependimoma/patología , Glioma/genética , Glioma/patología , Rombencéfalo/patología , Mutación/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología
9.
Neuro Oncol ; 25(1): 185-198, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35640920

RESUMEN

BACKGROUND: Supratentorial RELA fusion (ST-RELA) ependymomas (EPNs) are resistant tumors without an approved chemotherapeutic treatment. Unfortunately, the molecular mechanisms that lead to chemoresistance traits of ST-RELA remain elusive. The aim of this study was to assess RELA fusion-dependent signaling modules, specifically the role of the Hedgehog (Hh) pathway as a novel targetable vulnerability in ST-RELA. METHODS: Gene expression was analyzed in EPN from patient cohorts, by microarray, RNA-seq, qRT-PCR, and scRNA-seq. Inhibitors against Smoothened (SMO) (Sonidegib) and Aurora kinase A (AURKA) (Alisertib) were evaluated. Protein expression, primary cilia formation, and drug effects were assessed by immunoblot, immunofluorescence, and immunohistochemistry. RESULTS: Hh components were selectively overexpressed in EPNs induced by the RELA fusion. Single-cell analysis showed that the Hh signature was primarily confined to undifferentiated, stem-like cell subpopulations. Sonidegib exhibited potent growth-inhibitory effects on ST-RELA cells, suggesting a key role in active Hh signaling; importantly, the effect of Sonidegib was reversed by primary cilia loss. We, thus, tested the effect of AURKA inhibition by Alisertib, to induce cilia stabilization/reassembly. Strikingly, Alisertib rescued ciliogenesis and synergized with Sonidegib in killing ST-RELA cells. Using a xenograft model, we show that cilia loss is a mechanism for acquiring resistance to the inhibitory effect of Sonidegib. However, Alisertib fails to rescue cilia and highlights the need for other strategies to promote cilia reassembly, for treating ST-RELA tumors. CONCLUSION: Our study reveals a crucial role for the Hh pathway in ST-RELA tumor growth, and suggests that rescue of primary cilia represents a vulnerability of the ST-RELA EPNs.


Asunto(s)
Ependimoma , Neoplasias Supratentoriales , Humanos , Proteínas Hedgehog , Cilios/metabolismo , Cilios/patología , Aurora Quinasa A/genética , Ependimoma/patología , Neoplasias Supratentoriales/patología , Factor de Transcripción ReIA
10.
Nat Genet ; 54(12): 1881-1894, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36471067

RESUMEN

Histone 3 lysine27-to-methionine (H3-K27M) mutations most frequently occur in diffuse midline gliomas (DMGs) of the childhood pons but are also increasingly recognized in adults. Their potential heterogeneity at different ages and midline locations is vastly understudied. Here, through dissecting the single-cell transcriptomic, epigenomic and spatial architectures of a comprehensive cohort of patient H3-K27M DMGs, we delineate how age and anatomical location shape glioma cell-intrinsic and -extrinsic features in light of the shared driver mutation. We show that stem-like oligodendroglial precursor-like cells, present across all clinico-anatomical groups, display varying levels of maturation dependent on location. We reveal a previously underappreciated relationship between mesenchymal cancer cell states and age, linked to age-dependent differences in the immune microenvironment. Further, we resolve the spatial organization of H3-K27M DMG cell populations and identify a mitotic oligodendroglial-lineage niche. Collectively, our study provides a powerful framework for rational modeling and therapeutic interventions.


Asunto(s)
Glioma , Humanos , Niño , Glioma/genética , Histonas/genética , Metionina , Mutación , Racemetionina , Microambiente Tumoral/genética
11.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36040810

RESUMEN

Collateral lethality occurs when loss of a gene/protein renders cancer cells dependent on its remaining paralog. Combining genome-scale CRISPR/Cas9 loss-of-function screens with RNA sequencing in over 900 cancer cell lines, we found that cancers of nervous system lineage, including adult and pediatric gliomas and neuroblastomas, required the nuclear kinase vaccinia-related kinase 1 (VRK1) for their survival in vivo. VRK1 dependency was inversely correlated with expression of its paralog VRK2. VRK2 knockout sensitized cells to VRK1 loss, and conversely, VRK2 overexpression increased cell fitness in the setting of VRK1 loss. DNA methylation of the VRK2 promoter was associated with low VRK2 expression in human neuroblastomas and adult and pediatric gliomas. Mechanistically, depletion of VRK1 reduced barrier-to-autointegration factor phosphorylation during mitosis, resulting in DNA damage and apoptosis. Together, these studies identify VRK1 as a synthetic lethal target in VRK2 promoter-methylated adult and pediatric gliomas and neuroblastomas.


Asunto(s)
Glioma , Neuroblastoma , Vaccinia , Niño , Glioma/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Sistema Nervioso , Neuroblastoma/genética , Proteínas Serina-Treonina Quinasas/genética , Virus Vaccinia
12.
Acta Neuropathol Commun ; 10(1): 65, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484633

RESUMEN

Glioblastoma (GBM) is characterized by a particularly invasive phenotype, supported by oncogenic signals from the fibroblast growth factor (FGF)/ FGF receptor (FGFR) network. However, a possible role of FGFR4 remained elusive so far. Several transcriptomic glioma datasets were analyzed. An extended panel of primary surgical specimen-derived and immortalized GBM (stem)cell models and original tumor tissues were screened for FGFR4 expression. GBM models engineered for wild-type and dominant-negative FGFR4 overexpression were investigated regarding aggressiveness and xenograft formation. Gene set enrichment analyses of FGFR4-modulated GBM models were compared to patient-derived datasets. Despite widely absent in adult brain, FGFR4 mRNA was distinctly expressed in embryonic neural stem cells and significantly upregulated in glioblastoma. Pronounced FGFR4 overexpression defined a distinct GBM patient subgroup with dismal prognosis. Expression levels of FGFR4 and its specific ligands FGF19/FGF23 correlated both in vitro and in vivo and were progressively upregulated in the vast majority of recurrent tumors. Based on overexpression/blockade experiments in respective GBM models, a central pro-oncogenic function of FGFR4 concerning viability, adhesion, migration, and clonogenicity was identified. Expression of dominant-negative FGFR4 resulted in diminished (subcutaneous) or blocked (orthotopic) GBM xenograft formation in the mouse and reduced invasiveness in zebrafish xenotransplantation models. In vitro and in vivo data consistently revealed distinct FGFR4 and integrin/extracellular matrix interactions. Accordingly, FGFR4 blockade profoundly sensitized FGFR4-overexpressing GBM models towards integrin/focal adhesion kinase inhibitors. Collectively, FGFR4 overexpression contributes to the malignant phenotype of a highly aggressive GBM subgroup and is associated with integrin-related therapeutic vulnerabilities.


Asunto(s)
Glioblastoma , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Animales , Carcinogénesis , Glioblastoma/genética , Glioblastoma/patología , Humanos , Integrinas , Ratones , Recurrencia Local de Neoplasia , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra
13.
Acta Neuropathol ; 142(2): 339-360, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34046693

RESUMEN

Ependymomas (EPN) are central nervous system tumors comprising both aggressive and more benign molecular subtypes. However, therapy of the high-risk subtypes posterior fossa group A (PF-A) and supratentorial RELA-fusion positive (ST-RELA) is limited to gross total resection and radiotherapy, as effective systemic treatment concepts are still lacking. We have recently described fibroblast growth factor receptors 1 and 3 (FGFR1/FGFR3) as oncogenic drivers of EPN. However, the underlying molecular mechanisms and their potential as therapeutic targets have not yet been investigated in detail. Making use of transcriptomic data across 467 EPN tissues, we found that FGFR1 and FGFR3 were both widely expressed across all molecular groups. FGFR3 mRNA levels were enriched in ST-RELA showing the highest expression among EPN as well as other brain tumors. We further identified high expression levels of fibroblast growth factor 1 and 2 (FGF1, FGF2) across all EPN subtypes while FGF9 was elevated in ST-EPN. Interrogation of our EPN single-cell RNA-sequencing data revealed that FGFR3 was further enriched in cycling and progenitor-like cell populations. Corroboratively, we found FGFR3 to be predominantly expressed in radial glia cells in both mouse embryonal and human brain datasets. Moreover, we detected alternative splicing of the FGFR1/3-IIIc variant, which is known to enhance ligand affinity and FGFR signaling. Dominant-negative interruption of FGFR1/3 activation in PF-A and ST-RELA cell models demonstrated inhibition of key oncogenic pathways leading to reduced cell growth and stem cell characteristics. To explore the feasibility of therapeutically targeting FGFR, we tested a panel of FGFR inhibitors in 12 patient-derived EPN cell models revealing sensitivity in the low-micromolar to nano-molar range. Finally, we gain the first clinical evidence for the activity of the FGFR inhibitor nintedanib in the treatment of a patient with recurrent ST-RELA. Together, these preclinical and clinical data suggest FGFR inhibition as a novel and feasible approach to combat aggressive EPN.


Asunto(s)
Ependimoma/patología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Ependimoma/genética , Humanos , Ratones , Recurrencia Local de Neoplasia/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética
14.
J Control Release ; 334: 138-152, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33894304

RESUMEN

Hepatocellular carcinoma (HCC) is related to increasing incidence rates and poor clinical outcomes due to lack of efficient treatment options and emerging resistance mechanisms. The aim of the present study is to exploit a non-viral gene therapy enabling the expression of the parvovirus-derived oncotoxic protein NS1 in HCC. This anticancer protein interacts with different cellular kinases mediating a multimodal host-cell death. Lipoplexes (LPX) designed to deliver a DNA expression plasmid encoding NS1 are characterized using a comprehensive set of in vitro assays. The mechanisms of cell death induction are assessed and phosphoinositide-dependent kinase 1 (PDK1) is identified as a potential predictive biomarker for a NS1-LPX-based gene therapy. In an HCC xenograft mouse model, NS1-LPX therapeutic approach results in a significant reduction in tumor growth and extended survival. Data provide convincing evidence for future studies using a targeted NS1 gene therapy for PDK1 overexpressing HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/terapia , Terapia Genética , Neoplasias Hepáticas/terapia , Ratones , Plásmidos , Proteínas
15.
Dev Cell ; 54(2): 134-136, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32693052

RESUMEN

Posterior fossa type A (PFA) ependymoma is a lethal pediatric brain tumor proposed to be driven solely by epigenetic deregulation. Michealraj et al. (2020) demonstrate that hypoxia reprograms PFA metabolism and, subsequently, the epigenome toward H3K27 hypomethylation, mirroring transcriptional and metabolic signatures of gliogenic progenitors involved in embryonal hindbrain development.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Neoplasias Encefálicas/genética , Niño , Metilación de ADN/genética , Ependimoma/genética , Epigenoma , Epigenómica , Humanos , Hipoxia
16.
Cancer Cell ; 38(1): 44-59.e9, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32663469

RESUMEN

Ependymoma is a heterogeneous entity of central nervous system tumors with well-established molecular groups. Here, we apply single-cell RNA sequencing to analyze ependymomas across molecular groups and anatomic locations to investigate their intratumoral heterogeneity and developmental origins. Ependymomas are composed of a cellular hierarchy initiating from undifferentiated populations, which undergo impaired differentiation toward three lineages of neuronal-glial fate specification. While prognostically favorable groups of ependymoma predominantly harbor differentiated cells, aggressive groups are enriched for undifferentiated cell populations. The delineated transcriptomic signatures correlate with patient survival and define molecular dependencies for targeted treatment approaches. Taken together, our analyses reveal a developmental hierarchy underlying ependymomas relevant to biological and clinical behavior.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Ependimoma/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Diferenciación Celular/genética , Proliferación Celular/genética , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/terapia , Niño , Ependimoma/patología , Ependimoma/terapia , Genómica/métodos , Humanos , Neuronas/metabolismo , Neuronas/patología , Pronóstico , Análisis de Supervivencia
17.
Acta Neuropathol Commun ; 8(1): 78, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493453

RESUMEN

Treatment with small-molecule inhibitors, guided by precision medicine has improved patient outcomes in multiple cancer types. However, these compounds are often not effective against central nervous system (CNS) tumors. The failure of precision medicine approaches for CNS tumors is frequently attributed to the inability of these compounds to cross the blood-brain barrier (BBB), which impedes intratumoral target engagement. This is complicated by the fact that information on CNS penetration in CNS-tumor patients is still very limited. Herein, we evaluated cerebrospinal fluid (CSF) drug penetration, a well-established surrogate for CNS-penetration, in pediatric brain tumor patients. We analyzed 7 different oral anti-cancer drugs and their metabolites by high performance liquid chromatography mass spectrometry (HPLC-MS) in 42 CSF samples obtained via Ommaya reservoirs of 9 different patients. Moreover, we related the resulting data to commonly applied predictors of BBB-penetration including ABCB1 substrate-character, physicochemical properties and in silico algorithms. First, the measured CSF drug concentrations depicted good intra- and interpatient precision. Interestingly, ribociclib, vorinostat and imatinib showed high (> 10 nM), regorafenib and dasatinib moderate (1-10 nM) penetrance. In contrast, panobinostat und nintedanib were not detected. In addition, we identified active metabolites of imatinib and ribociclib. Comparison to well-established BBB-penetrance predictors confirmed low molecular weight, high proportion of free-drug and low ABCB1-mediated efflux as central factors. However, evaluation of diverse in silico algorithms showed poor correlation within our dataset. In summary, our study proves the feasibility of measuring CSF concentration via Ommaya reservoirs thus setting the ground for utilization of this method in future clinical trials. Moreover, we demonstrate CNS presence of certain small-molecule inhibitors and even active metabolites in CSF of CNS-tumor patients and provide a potential guidance for physicochemical and biological factors favoring CNS-penetration.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/líquido cefalorraquídeo , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adolescente , Adulto , Antineoplásicos/farmacocinética , Transporte Biológico , Niño , Femenino , Humanos , Masculino , Adulto Joven
18.
Int J Cancer ; 147(6): 1680-1693, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32064608

RESUMEN

Ponatinib is a small molecule multi-tyrosine kinase inhibitor clinically approved for anticancer therapy. Molecular mechanisms by which cancer cells develop resistance against ponatinib are currently poorly understood. Likewise, intracellular drug dynamics, as well as potential microenvironmental factors affecting the activity of this compound are unknown. Cell/molecular biological and analytical chemistry methods were applied to investigate uptake kinetics/subcellular distribution, the role of lipid droplets (LDs) and lipoid microenvironment compartments in responsiveness of FGFR1-driven lung cancer cells toward ponatinib. Selection of lung cancer cells for acquired ponatinib resistance resulted in elevated intracellular lipid levels. Uncovering intrinsic ponatinib fluorescence enabled dissection of drug uptake/retention kinetics in vitro as well as in mouse tissue cryosections, and revealed selective drug accumulation in LDs of cancer cells. Pharmacological LD upmodulation or downmodulation indicated that the extent of LD formation and consequent ponatinib incorporation negatively correlated with anticancer drug efficacy. Co-culturing with adipocytes decreased ponatinib levels and fostered survival of cancer cells. Ponatinib-selected cancer cells exhibited increased LD levels and enhanced ponatinib deposition into this organelle. Our findings demonstrate intracellular deposition of the clinically approved anticancer compound ponatinib into LDs. Furthermore, increased LD biogenesis was identified as adaptive cancer cell-defense mechanism via direct drug scavenging. Together, this suggests that LDs represent an underestimated organelle influencing intracellular pharmacokinetics and activity of anticancer tyrosine kinase inhibitors. Targeting LD integrity might constitute a strategy to enhance the activity not only of ponatinib, but also other clinically approved, lipophilic anticancer therapeutics.


Asunto(s)
Resistencia a Antineoplásicos , Imidazoles/farmacocinética , Gotas Lipídicas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacocinética , Piridazinas/farmacocinética , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Imidazoles/uso terapéutico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridazinas/uso terapéutico , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Angew Chem Int Ed Engl ; 58(24): 8007-8012, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31002438

RESUMEN

Metal-driven self-assembly afforded a multitude of fascinating supramolecular coordination complexes (SCCs) with applications as catalysts, host-guest, and stimuli-responsive systems. However, the interest in the biological applications of SCCs is only starting to emerge and thorough characterization of their behavior in biological milieus is still lacking. Herein, we report on the synthesis and detailed in-cell tracking of a Pt2 L2 metallacycle. We show that our hexagonal supramolecule accumulates in cancer cell nuclei, exerting a distinctive blue fluorescence staining of chromatin resistant to UV photobleaching selectively in nucleolar G4-rich regions. SCC co-localizes with epitopes of the quadruplex-specific antibody BG4 and replaces other well-known G4 stabilizers. Moreover, the photophysical changes accompanying the metallacycle binding to G4s in solution (fluorescence quenching, absorption enhancement) also take place intracellularly, allowing its subcellular interaction tracking.


Asunto(s)
ADN/química , G-Cuádruplex , Compuestos Organoplatinos/química , Línea Celular Tumoral , ADN/metabolismo , Fibroblastos/metabolismo , Humanos , Queratinocitos/metabolismo , Células MCF-7 , Modelos Moleculares , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/farmacocinética , Espectrofotometría Ultravioleta
20.
Chem Rev ; 119(2): 1519-1624, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30489072

RESUMEN

The immune system deploys a multitude of innate and adaptive mechanisms not only to ward off pathogens but also to prevent malignant transformation ("immune surveillance"). Hence, a clinically apparent tumor already reflects selection for those malignant cell clones capable of evading immune recognition ("immune evasion"). Metal drugs, besides their well-investigated cytotoxic anticancer effects, massively interact with the cancer-immune interface and can reverse important aspects of immune evasion. This topic has recently gained intense attention based on combination approaches with anticancer immunotherapy (e.g., immune checkpoint inhibitors), a strategy recently delivering first exciting results in clinical settings. This review summarizes the promising but still extremely fragmentary knowledge on the interplay of metal drugs with the fidelity of anticancer immune responses but also their role in adverse effects. It highlights that, at least in some cases, metal drugs can induce long-lasting anticancer immune responses. Important steps in this process comprise altered visibility and susceptibility of cancer cells toward innate and adaptive immunity, as well as direct impacts on immune cell populations and the tumor microenvironment. On the basis of the gathered information, we suggest initiating joint multidisciplinary programs to implement comprehensive immune analyses into strategies to develop novel and smart anticancer metal compounds.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/química , Metales/química , Neoplasias/terapia , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunoterapia , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...