Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798549

RESUMEN

Inside the cell, proteins essential for signaling, morphogenesis, and migration navigate complex pathways, typically via vesicular trafficking or microtubule-driven mechanisms 1-3 . However, the process by which soluble cytoskeletal monomers maneuver through the cytoplasm's ever-changing environment to reach their destinations without using these pathways remains unknown. 4-6 Here, we show that actin cytoskeletal treadmilling leads to the formation of a semi-permeable actin-myosin barrier, creating a specialized compartment separated from the rest of the cell body that directs proteins toward the cell edge by advection, diffusion facilitated by fluid flow. Contraction at this barrier generates a molecularly non-specific fluid flow that transports actin, actin-binding proteins, adhesion proteins, and even inert proteins forward. The local curvature of the barrier specifically targets these proteins toward protruding edges of the leading edge, sites of new filament growth, effectively coordinating protein distribution with cellular dynamics. Outside this compartment, diffusion remains the primary mode of protein transport, contrasting sharply with the directed advection within. This discovery reveals a novel protein transport mechanism that redefines the front of the cell as a pseudo-organelle, actively orchestrating protein mobilization for cellular front activities such as protrusion and adhesion. By elucidating a new model of protein dynamics at the cellular front, this work contributes a critical piece to the puzzle of how cells adapt their internal structures for targeted and rapid response to extracellular cues. The findings challenge the current understanding of intracellular transport, suggesting that cells possess highly specialized and previously unrecognized organizational strategies for managing protein distribution efficiently, providing a new framework for understanding the cellular architecture's role in rapid response and adaptation to environmental changes.

2.
bioRxiv ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38766036

RESUMEN

Single-molecule localization microscopy (SMLM) uses activatable or switchable fluorophores to create non-diffraction limited maps of molecular location in biological samples. Despite the utility of this imaging technique, the portfolio of appropriate labels for SMLM remains limited. Here, we describe a general strategy for the construction of "glitter bomb" labels by simply combining rhodamine and coumarin dyes though an amide bond. Condensation of the ortho-carboxyl group on the pendant phenyl ring of rhodamine dyes with a 7-aminocoumarin yields photochromic or spontaneously blinking fluorophores depending on the parent rhodamine structure. We apply this strategy to prepare labels useful super-resolution experiments in fixed cells using different attachment techniques. This general glitter bomb strategy should lead to improved labels for SMLM, ultimately enabling the creation of detailed molecular maps in biological samples.

3.
bioRxiv ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38766149

RESUMEN

Spontaneously blinking fluorophores permit the detection and localization of individual molecules without reducing buffers or caging groups, thus simplifying single-molecule localization microscopy (SMLM). The intrinsic blinking properties of such dyes are dictated by molecular structure and modulated by environment, which can limit utility. We report a series of tuned spontaneously blinking dyes with duty cycles that span two orders of magnitude, allowing facile SMLM in cells and dense biomolecular structures.

4.
Front Pharmacol ; 13: 1029093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532738

RESUMEN

The translation initiation complex 4F (eIF4F) is a rate-limiting factor in protein synthesis. Alterations in eIF4F activity are linked to several diseases, including cancer and infectious diseases. To this end, coronaviruses require eIF4F complex activity to produce proteins essential for their life cycle. Efforts to target coronaviruses by abrogating translation have been largely limited to repurposing existing eIF4F complex inhibitors. Here, we report the results of a high throughput screen to identify small molecules that disrupt eIF4F complex formation and inhibit coronavirus RNA and protein levels. Of 338,000 small molecules screened for inhibition of the eIF4F-driven, CAP-dependent translation, we identified SBI-1232 and two structurally related analogs, SBI-5844 and SBI-0498, that inhibit human coronavirus OC43 (HCoV-OC43; OC43) with minimal cell toxicity. Notably, gene expression changes after OC43 infection of Vero E6 or A549 cells were effectively reverted upon treatment with SBI-5844 or SBI-0498. Moreover, SBI-5844 or SBI-0498 treatment effectively impeded the eIF4F complex assembly, with concomitant inhibition of newly synthesized OC43 nucleocapsid protein and OC43 RNA and protein levels. Overall, we identify SBI-5844 and SBI-0498 as small molecules targeting the eIF4F complex that may limit coronavirus transcripts and proteins, thereby representing a basis for developing novel therapeutic modalities against coronaviruses.

5.
Nat Commun ; 13(1): 6558, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323665

RESUMEN

mRNA translation is tightly regulated to preserve cellular homeostasis. Despite extensive biochemical, genetic, and structural studies, a detailed understanding of mRNA translation regulation is lacking. Imaging methodologies able to resolve the binding dynamics of translation factors at single-cell and single-mRNA resolution were necessary to fully elucidate regulation of this paramount process. Here live-cell spectroscopy and single-particle tracking were combined to interrogate the binding dynamics of endogenous initiation factors to the 5'cap. The diffusion of initiation factors (IFs) changed markedly upon their association with mRNA. Quantifying their diffusion characteristics revealed the sequence of IFs assembly and disassembly in cell lines and the clustering of translation in neurons. This approach revealed translation regulation at high spatial and temporal resolution that can be applied to the formation of any endogenous complex that results in a measurable shift in diffusion.


Asunto(s)
Factores de Iniciación de Péptidos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Factores de Iniciación de Péptidos/genética , Caperuzas de ARN/metabolismo , Iniciación de la Cadena Peptídica Traduccional
6.
Nat Genet ; 54(4): 481-491, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35410381

RESUMEN

Mammalian chromosomes are organized into megabase-sized compartments that are further subdivided into topologically associating domains (TADs). While the formation of TADs is dependent on cohesin, the mechanism behind compartmentalization remains enigmatic. Here, we show that the bromodomain and extraterminal (BET) family scaffold protein BRD2 promotes spatial mixing and compartmentalization of active chromatin after cohesin loss. This activity is independent of transcription but requires BRD2 to recognize acetylated targets through its double bromodomain and interact with binding partners with its low-complexity domain. Notably, genome compartmentalization mediated by BRD2 is antagonized on the one hand by cohesin and on the other hand by the BET homolog protein BRD4, both of which inhibit BRD2 binding to chromatin. Polymer simulation of our data supports a BRD2-cohesin interplay model of nuclear topology, in which genome compartmentalization results from a competition between loop extrusion and chromatin-state-specific affinity interactions.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromosomas/genética , Cromosomas/metabolismo , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Elife ; 92020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32338606

RESUMEN

The H2A.Z histone variant, a genome-wide hallmark of permissive chromatin, is enriched near transcription start sites in all eukaryotes. H2A.Z is deposited by the SWR1 chromatin remodeler and evicted by unclear mechanisms. We tracked H2A.Z in living yeast at single-molecule resolution, and found that H2A.Z eviction is dependent on RNA Polymerase II (Pol II) and the Kin28/Cdk7 kinase, which phosphorylates Serine 5 of heptapeptide repeats on the carboxy-terminal domain of the largest Pol II subunit Rpb1. These findings link H2A.Z eviction to transcription initiation, promoter escape and early elongation activities of Pol II. Because passage of Pol II through +1 nucleosomes genome-wide would obligate H2A.Z turnover, we propose that global transcription at yeast promoters is responsible for eviction of H2A.Z. Such usage of yeast Pol II suggests a general mechanism coupling eukaryotic transcription to erasure of the H2A.Z epigenetic signal.


Asunto(s)
Histonas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Transcripción Genética , Ensamble y Desensamble de Cromatina , Histonas/genética , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Imagen Individual de Molécula , Sitio de Iniciación de la Transcripción
8.
Nat Methods ; 17(4): 430-436, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203384

RESUMEN

To image the accessible genome at nanometer scale in situ, we developed three-dimensional assay for transposase-accessible chromatin-photoactivated localization microscopy (3D ATAC-PALM) that integrates an assay for transposase-accessible chromatin with visualization, PALM super-resolution imaging and lattice light-sheet microscopy. Multiplexed with oligopaint DNA-fluorescence in situ hybridization (FISH), RNA-FISH and protein fluorescence, 3D ATAC-PALM connected microscopy and genomic data, revealing spatially segregated accessible chromatin domains (ACDs) that enclose active chromatin and transcribed genes. Using these methods to analyze genetically perturbed cells, we demonstrated that genome architectural protein CTCF prevents excessive clustering of accessible chromatin and decompacts ACDs. These results highlight 3D ATAC-PALM as a useful tool to probe the structure and organizing mechanism of the genome.


Asunto(s)
ADN/metabolismo , Genómica/métodos , Hibridación Fluorescente in Situ/métodos , Microscopía/métodos , Pintura Cromosómica , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Procesamiento de Imagen Asistido por Computador , Análisis de Secuencia de ADN/métodos
9.
Methods Mol Biol ; 1663: 179-188, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28924668

RESUMEN

The development of genetically encoded self-labeling protein tags such as the HaloTag and SNAP-tag has expanded the utility of chemical dyes in microscopy. Intracellular labeling using these systems requires small, cell-permeable dyes with high brightness and photostability. We recently discovered a general method to improve the properties of classic fluorophores by replacing N,N-dimethylamino groups with four-membered azetidine rings to create the "Janelia Fluor" dyes. Here, we describe the synthesis of the HaloTag and SNAP-tag ligands of Janelia Fluor 549 and Janelia Fluor 646 as well as standard labeling protocols for use in ensemble and single-molecule cellular imaging.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Microscopía Fluorescente/métodos , Animales , Colorantes Fluorescentes/química , Humanos , Ligandos , Mamíferos , Estructura Molecular , Fenómenos Químicos Orgánicos , Imagen Individual de Molécula , Coloración y Etiquetado
10.
Genes Dev ; 30(18): 2106-2118, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798851

RESUMEN

Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A "step-wise" preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB-promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II-TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions.


Asunto(s)
Regiones Promotoras Genéticas/fisiología , Multimerización de Proteína/fisiología , Factores de Transcripción TFII/metabolismo , Activación Transcripcional/fisiología , Línea Celular Tumoral , Humanos , Microscopía de Interferencia , Unión Proteica , ARN Polimerasa II/metabolismo , Eliminación de Secuencia , Factores de Tiempo
11.
Proc Natl Acad Sci U S A ; 113(44): E6877-E6886, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791158

RESUMEN

Localization of mRNA is required for protein synthesis to occur within discrete intracellular compartments. Neurons represent an ideal system for studying the precision of mRNA trafficking because of their polarized structure and the need for synapse-specific targeting. To investigate this targeting, we derived a quantitative and analytical approach. Dendritic spines were stimulated by glutamate uncaging at a diffraction-limited spot, and the localization of single ß-actin mRNAs was measured in space and time. Localization required NMDA receptor activity, a dynamic actin cytoskeleton, and the transacting RNA-binding protein, Zipcode-binding protein 1 (ZBP1). The ability of the mRNA to direct newly synthesized proteins to the site of localization was evaluated using a Halo-actin reporter so that RNA and protein were detected simultaneously. Newly synthesized Halo-actin was enriched at the site of stimulation, required NMDA receptor activity, and localized preferentially at the periphery of spines. This work demonstrates that synaptic activity can induce mRNA localization and local translation of ß-actin where the new actin participates in stabilizing the expanding synapse in dendritic spines.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas/metabolismo , Transporte de ARN/fisiología , Citoesqueleto de Actina/metabolismo , Actinas/biosíntesis , Actinas/genética , Actinas/metabolismo , Animales , Movimiento Celular , Citoplasma/metabolismo , Dendritas/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Neuronas/citología , Transporte de Proteínas/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
12.
Nat Methods ; 13(12): 985-988, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27776112

RESUMEN

Small-molecule fluorophores are important tools for advanced imaging experiments. We previously reported a general method to improve small, cell-permeable fluorophores which resulted in the azetidine-containing 'Janelia Fluor' (JF) dyes. Here, we refine and extend the utility of these dyes by synthesizing photoactivatable derivatives that are compatible with live-cell labeling strategies. Once activated, these derived compounds retain the superior brightness and photostability of the JF dyes, enabling improved single-particle tracking and facile localization microscopy experiments.


Asunto(s)
Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Procesos Fotoquímicos , Imagen Individual de Molécula/métodos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Animales , Células COS , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Células Madre Embrionarias , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/efectos de la radiación , Humanos , Ligandos , Luz , Ratones , Microscopía Fluorescente , Estructura Molecular , Fotoquímica/métodos , Proteínas Recombinantes de Fusión/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/efectos de la radiación , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Coloración y Etiquetado
13.
Nat Biotechnol ; 34(9): 987-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27376584

RESUMEN

Expansion microscopy (ExM) enables imaging of preserved specimens with nanoscale precision on diffraction-limited instead of specialized super-resolution microscopes. ExM works by physically separating fluorescent probes after anchoring them to a swellable gel. The first ExM method did not result in the retention of native proteins in the gel and relied on custom-made reagents that are not widely available. Here we describe protein retention ExM (proExM), a variant of ExM in which proteins are anchored to the swellable gel, allowing the use of conventional fluorescently labeled antibodies and streptavidin, and fluorescent proteins. We validated and demonstrated the utility of proExM for multicolor super-resolution (∼70 nm) imaging of cells and mammalian tissues on conventional microscopes.


Asunto(s)
Anticuerpos Monoclonales , Encéfalo/citología , Encéfalo/metabolismo , Aumento de la Imagen/métodos , Proteínas Luminiscentes , Microscopía Fluorescente/métodos , Animales , Células HEK293 , Células HeLa , Humanos , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos
14.
Science ; 352(6292): 1425-9, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27313040

RESUMEN

Although messenger RNA (mRNA) translation is a fundamental biological process, it has never been imaged in real time in vivo with single-molecule precision. To achieve this, we developed nascent chain tracking (NCT), a technique that uses multi-epitope tags and antibody-based fluorescent probes to quantify protein synthesis dynamics at the single-mRNA level. NCT reveals an elongation rate of ~10 amino acids per second, with initiation occurring stochastically every ~30 seconds. Polysomes contain ~1 ribosome every 200 to 900 nucleotides and are globular rather than elongated in shape. By developing multicolor probes, we showed that most polysomes act independently; however, a small fraction (~5%) form complexes in which two distinct mRNAs can be translated simultaneously. The sensitivity and versatility of NCT make it a powerful new tool for quantifying mRNA translation kinetics.


Asunto(s)
Imagen Molecular/métodos , Biosíntesis de Proteínas/fisiología , ARN Mensajero/biosíntesis , Anticuerpos/química , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Humanos , Histona Demetilasas con Dominio de Jumonji/biosíntesis , Histona Demetilasas con Dominio de Jumonji/genética , Cinética , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Polirribosomas/metabolismo , Biosíntesis de Proteínas/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Análisis de la Célula Individual , Factores de Tiempo
15.
Elife ; 52016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27138339

RESUMEN

Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous ß-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output.


Asunto(s)
Actinas/genética , Sitios Genéticos , ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , Animales , Células Cultivadas , Fibroblastos/fisiología , Regulación de la Expresión Génica , Ratones
16.
Elife ; 52016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26760529

RESUMEN

Messenger RNA localization is important for cell motility by local protein translation. However, while single mRNAs can be imaged and their movements tracked in single cells, it has not yet been possible to determine whether these mRNAs are actively translating. Therefore, we imaged single ß-actin mRNAs tagged with MS2 stem loops colocalizing with labeled ribosomes to determine when polysomes formed. A dataset of tracking information consisting of thousands of trajectories per cell demonstrated that mRNAs co-moving with ribosomes have significantly different diffusion properties from non-translating mRNAs that were exposed to translation inhibitors. These data indicate that ribosome load changes mRNA movement and therefore highly translating mRNAs move slower. Importantly, ß-actin mRNA near focal adhesions exhibited sub-diffusive corralled movement characteristic of increased translation. This method can identify where ribosomes become engaged for local protein production and how spatial regulation of mRNA-protein interactions mediates cell directionality.


Asunto(s)
Actinas/biosíntesis , Imagen Óptica/métodos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Animales , Células Cultivadas , Fibroblastos/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Coloración y Etiquetado/métodos
17.
Nat Methods ; 12(9): 838-40, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26192083

RESUMEN

Live-cell imaging and particle tracking provide rich information on mechanisms of intracellular transport. However, trajectory analysis procedures to infer complex transport dynamics involving stochastic switching between active transport and diffusive motion are lacking. We applied Bayesian model selection to hidden Markov modeling to infer transient transport states from trajectories of mRNA-protein complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing human cells. The software is available at http://hmm-bayes.org/.


Asunto(s)
Actinas/metabolismo , Hipocampo/metabolismo , Modelos Biológicos , Imagen Molecular/métodos , Neuronas/citología , Neuronas/metabolismo , Animales , Teorema de Bayes , Células Cultivadas , Simulación por Computador , Femenino , Células HeLa , Hipocampo/citología , Humanos , Cadenas de Markov , Ratones , MicroARNs/metabolismo , Microscopía Fluorescente/métodos , Modelos Estadísticos , Reconocimiento de Normas Patrones Automatizadas/métodos , Transporte de Proteínas/fisiología , Programas Informáticos
18.
Nat Methods ; 12(6): 568-76, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915120

RESUMEN

We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These 'spaghetti monster' fluorescent proteins (smFPs) distributed well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localized weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allowed robust, orthogonal multicolor visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers and greatly increase the number of simultaneous imaging channels, and they performed well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improved single-molecule image tracking and increased yield for RNA-seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization.


Asunto(s)
Proteínas Luminiscentes/química , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Animales , Antígenos , Mapeo Encefálico , Drosophila , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Neuronas , Conformación Proteica
19.
Nat Methods ; 12(3): 244-50, 3 p following 250, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25599551

RESUMEN

Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N,N-dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range.


Asunto(s)
Colorantes Fluorescentes/química , Microscopía Ultravioleta/métodos , Imagen Molecular/métodos , Azetidinas/química , Técnicas de Química Sintética , Cumarinas/química , Fluoresceína/química , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/síntesis química , Células HeLa , Humanos , Modelos Moleculares , Teoría Cuántica , Rodaminas/química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta/métodos , Relación Estructura-Actividad
20.
Proc SPIE Int Soc Opt Eng ; 9550: 955008, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26819489

RESUMEN

Our aim is to develop quantitative single-molecule assays to study when and where molecules are interacting inside living cells and where enzymes are active. To this end we present a three-camera imaging microscope for fast tracking of multiple interacting molecules simultaneously, with high spatiotemporal resolution. The system was designed around an ASI RAMM frame using three separate tube lenses and custom multi-band dichroics to allow for enhanced detection efficiency. The frame times of the three Andor iXon Ultra EMCCD cameras are hardware synchronized to the laser excitation pulses of the three excitation lasers, such that the fluorophores are effectively immobilized during frame acquisitions and do not yield detections that are motion-blurred. Stroboscopic illumination allows robust detection from even rapidly moving molecules while minimizing bleaching, and since snapshots can be spaced out with varying time intervals, stroboscopic illumination enables a direct comparison to be made between fast and slow molecules under identical light dosage. We have developed algorithms that accurately track and co-localize multiple interacting biomolecules. The three-color microscope combined with our co-movement algorithms have made it possible for instance to simultaneously image and track how the chromosome environment affects diffusion kinetics or determine how mRNAs diffuse during translation. Such multiplexed single-molecule measurements at a high spatiotemporal resolution inside living cells will provide a major tool for testing models relating molecular architecture and biological dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA