Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(24): 17615-17625, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445185

RESUMEN

Changes in sulfate (SO42-) deposition have been linked to changes in mercury (Hg) methylation in peatlands and water quality in freshwater catchments. There is little empirical evidence, however, of how quickly methyl-Hg (MeHg, a bioaccumulative neurotoxin) export from catchments might change with declining SO42- deposition. Here, we present responses in total Hg (THg), MeHg, total organic carbon, pH, and SO42- export from a peatland-dominated catchment as a function of changing SO42- deposition in a long-term (1998-2011), whole-ecosystem, control-impact experiment. Annual SO42- deposition to half of a 2-ha peatland was experimentally increased 6-fold over natural levels and then returned to ambient levels in two phases. Sulfate additions led to a 5-fold increase in monthly flow-weighted MeHg concentrations and yields relative to a reference catchment. Once SO42- additions ceased, MeHg concentrations in the outflow streamwater returned to pre-SO42- addition levels within 2 years. The decline in streamwater MeHg was proportional to the change in the peatland area no longer receiving experimental SO42- inputs. Importantly, net demethylation and increased sorption to peat hastened the return of MeHg to baseline levels beyond purely hydrological flushing. Overall, we present clear empirical evidence of rapid and proportionate declines in MeHg export from a peatland-dominated catchment when SO42- deposition declines.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Ecosistema , Sulfatos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Mercurio/análisis , Óxidos de Azufre
2.
J Paleolimnol ; 66(4): 389-405, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720408

RESUMEN

The spiny water flea (Bythotrephes cederströmii), a freshwater crustacean considered to be the world's best-studied invasive zooplankter, was first recorded in North America in the Laurentian Great Lakes during the 1980s. Its arrival is widely considered to be the result of ocean-going cargo ships that translocated contaminated ballast water from Eurasia to the Great Lakes during the 1970-1980s. The subsequent first discovery of the species in inland lakes is consistent with the hypothesis that propagules dispersed initially from established Great Lakes populations. Here we present evidence of exoskeletal remains, including mandibles, tail spines, and resting eggs, in 210Pb-dated lake sediment cores, which suggests that B. cederströmii was already resident in four inland North American lakes (two in Minnesota, USA; two in Ontario, Canada) by at least the early 1900s. Densities of exoskeletal remains were low and relatively steady from first appearance until about 1990, after which time they increased in all cores. The earliest evidence that we found was a mandible at 33-cm depth (pre-1650) in the sediments of Three Mile Lake, Ontario, Canada. These unexpected findings challenge the current paradigm of B. cederströmii invasion, renew uncertainty about the timing and sequence of its colonization of North American lakes, and potentially question our ability to detect invasive species with traditional sampling methods. We attempted to eliminate errors in the dated stratigraphies of the exoskeletal remains that might have been introduced either methodologically (e.g., core-wall smearing) or naturally (e.g., bioturbation). Nonetheless, given the very low numbers of subfossils encountered, questions remain about the possible artifactual nature of our observations and therefore we regard our results as 'preliminary findings' at this time.

3.
Environ Sci Technol ; 54(15): 9325-9333, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32597170

RESUMEN

The strongest evidence for anthropogenic alterations to the global mercury (Hg) cycle comes from historical records of mercury deposition preserved in lake sediments. Hg isotopes have added a new dimension to these sedimentary archives, promising additional insights into Hg source apportionment and biogeochemical processing. Presently, most interpretations of historical changes are constrained to a small number of locally contaminated ecosystems. Here, we describe changes in natural Hg isotope records from a suite of dated sediment cores collected from various remote lakes of North America. In nearly all cases, the rise in industrial-use Hg is accompanied by an increase in δ202Hg and Δ199Hg values. These trends can be attributed to large-scale industrial emission of Hg into the atmosphere and are consistent with positive Δ199Hg values measured in modern-day precipitation and modeled increases in δ202Hg values from global emission inventories. Despite similar temporal trends among cores, the baseline isotopic values vary considerably among the different study regions, likely attributable to differences in the fractionation produced in situ as well as differing amounts of atmospherically delivered Hg. Differences among the study lakes in precipitation and watershed size provide an empirical framework for evaluating Hg isotopic signatures and global Hg cycling.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Mercurio/análisis , América del Norte , Estados Unidos , Contaminantes Químicos del Agua/análisis
4.
Proc Natl Acad Sci U S A ; 116(47): 23600-23608, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685632

RESUMEN

To understand the impact reduced mercury (Hg) loading and invasive species have had on methylmercury bioaccumulation in predator fish of Lake Michigan, we reconstructed bioaccumulation trends from a fish archive (1978 to 2012). By measuring fish Hg stable isotope ratios, we related temporal changes in Hg concentrations to varying Hg sources. Additionally, dietary tracers were necessary to identify food web influences. Through combined Hg, C, and N stable isotopic analyses, we were able to differentiate between a shift in Hg sources to fish and periods when energetic transitions (from dreissenid mussels) led to the assimilation of contrasting Hg pools (2000 to present). In the late 1980s, lake trout δ202Hg increased (0.4‰) from regulatory reductions in regional Hg emissions. After 2000, C and N isotopes ratios revealed altered food web pathways, resulting in a benthic energetic shift and changes to Hg bioaccumulation. Continued increases in δ202Hg indicate fish are responding to several United States mercury emission mitigation strategies that were initiated circa 1990 and continued through the 2011 promulgation of the Mercury and Air Toxics Standards rule. Unlike archives of sediments, this fish archive tracks Hg sources susceptible to bioaccumulation in Great Lakes fisheries. Analysis reveals that trends in fish Hg concentrations can be substantially affected by shifts in trophic structure and dietary preferences initiated by invasive species in the Great Lakes. This does not diminish the benefits of declining emissions over this period, as fish Hg concentrations would have been higher without these actions.


Asunto(s)
Cadena Alimentaria , Compuestos de Metilmercurio/análisis , Trucha/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/legislación & jurisprudencia , Anfípodos/química , Animales , Dieta , Dreissena/química , Política Ambiental , Agua Dulce/química , Sedimentos Geológicos/química , Especies Introducidas , Lagos , Isótopos de Mercurio/análisis , Michigan , Conducta Predatoria , Factores de Tiempo , Trucha/fisiología
5.
Environ Sci Process Impacts ; 20(8): 1167-1179, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30043816

RESUMEN

Antibiotic chemicals and antibiotic resistance genes enter the environment via wastewater effluents as well as from runoff from agricultural operations. The relative importance of these two sources, however, is largely unknown. The relationship between the concentrations of chemicals and genes requires exploration, for antibiotics in the environment may lead to development or retention of resistance genes by bacteria. The genes that confer resistance to metal toxicity may also be important in antibiotic resistance. In this work, concentrations of 19 antibiotics (using liquid chromatography tandem mass spectrometry), 14 metals (using inductively coupled plasma-mass spectrometry), and 45 metal, antibiotic, and antibiotic-resistance associated genes (using a multiplex, microfluidic quantitative polymerase chain reaction method) were measured in 13 sediment samples from two large rivers as well as along a spatial transect in a wastewater effluent-impacted lake. Nine of the antibiotics were detected in the rivers and 13 were detected in the lake. Sixteen different resistance genes were detected. The surrounding land use and proximity to wastewater treatment plants are important factors in the number and concentrations of antibiotics detected. Correlations among antibiotic chemical concentrations, metal concentrations, and resistance genes occur over short spatial scales in a lake but not over longer distances in major rivers. The observed correlations likely result from the chemicals and resistance genes arising from the same source, and differences in fate and transport over larger scales lead to loss of this relationship.


Asunto(s)
Antibacterianos/análisis , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Sedimentos Geológicos/análisis , Metales/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Lagos/análisis , Ríos/química , Aguas Residuales/química
6.
Environ Sci Technol ; 52(14): 7614-7620, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29897241

RESUMEN

Historical reconstruction of mercury (Hg) accumulation in natural archives, especially lake sediments, has been essential to understanding human perturbation of the global Hg cycle. Here we present a high-resolution chronology of Hg accumulation between 1727 and 1996 in a varved sediment core from the Pettaquamscutt River Estuary (PRE), Rhode Island. Mercury accumulation is examined relative to (1) historic deposition of polycyclic aromatic hydrocarbons (PAHs) and lead (Pb) and its isotopes (206Pb/207Pb) in the same core, and (2) other reconstructions of Hg deposition in urban and remote settings. Mercury deposition in PRE parallels the temporal patterns of PAHs, and both track industrialization and regional coal use between 1850 and 1950 as well as rising petroleum use after 1950. There is little indication of increased Hg deposition from late 19th-century silver and gold mining in the western U.S. A broad maximum of Hg deposition during 1930-1980, and not found in remote sites, is consistent with the predicted influence of additional industrial sources and commercial products. Our results imply that a significant portion of global anthropogenic Hg emissions during the 20th century was deposited locally, near urban and industrial centers of Hg use and release.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Lagos , New England , Rhode Island
7.
Sci Total Environ ; 621: 970-979, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29074236

RESUMEN

The widespread detection of antibiotics in the environment is concerning because antibiotics are designed to be effective at small doses. The objective of this work was to quantify the accumulation rates of antibiotics used by humans and animals, spanning several major antibiotic classes (sulfonamides, tetracyclines, fluoroquinolones, and macrolides), in Minnesota lake-sediment cores. Our goal was to determine temporal trends, the major anthropogenic source to these lacustrine systems, and the importance of natural production. A historical record of usage trends for ten human and/or animal-use antibiotics (four sulfonamides, three fluoroquinolones, one macrolide, trimethoprim, and lincomycin) was faithfully captured in the sediment cores. Nine other antibiotics were not detected. Ofloxacin, trimethoprim, sulfapyridine, and sulfamethazine were detected in all of the anthropogenically-impacted studied lakes. Maximum sediment fluxes reached 20.5ngcm-2yr-1 (concentration 66.1ng/g) for ofloxacin, 1.2ngcm-2yr-1 (1.2ng/g) for trimethoprim, 3.3ngcm-2yr-1 (11.3ng/g) for sulfapyridine, and 1.0ngcm-2yr-1 (1.6ng/g) for sulfamethazine, respectively. Natural production of lincomycin may have occurred in one lake at fluxes ranging from 0.4 to 1.8ngcm-2yr-1 (0.1 to 5.8ng/g). Wastewater effluent appears to be the primary source of antibiotics in the studied lakes, with lesser inputs from agricultural activities.


Asunto(s)
Antibacterianos/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/química , Lagos/química , Contaminantes Químicos del Agua/análisis , Minnesota
8.
Sci Total Environ ; 580: 1197-1204, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28024742

RESUMEN

In low-sulfate and sulfate-limited freshwater sediments, sulfate loading increases the production of methylmercury (MeHg), a potent and bioaccumulative neurotoxin. Sulfate loading to anoxic sediments leads to sulfide production that can inhibit mercury methylation, but this has not been commonly observed in freshwater lakes and wetlands. In this study, sediments were collected from sulfate-impacted, neutral pH, surface water bodies located downstream from ongoing and historic mining activities to examine how chronic sulfate loading produces porewater sulfide, and influences MeHg production and transport. Sediments were collected over two years, during several seasons from lakes with a wide range of overlying water sulfate concentration. Samples were characterized for in-situ solid phase and porewater MeHg, Hg methylation potentials via incubations with enriched stable Hg isotopes, and sulfur, carbon, and iron content and speciation. Porewater sulfide reflected historic sulfur loading and was strongly related to the extractable iron content of sediment. Overall, methylation potentials were consistent with the accumulation of MeHg on the solid phase, but both methylation potentials and MeHg were significantly lower at chronically sulfate-impacted sites with a low solid-phase Fe:S ratio. At these heavily sulfate-impacted sites that also contained elevated porewater sulfide, both MeHg production and partitioning are influenced: Hg methylation potentials and sediment MeHg concentrations are lower, but occasionally porewater MeHg concentrations in sediment are elevated, particularly in the spring. The dual role of sulfide as a ligand for inorganic mercury (decreasing bioavailability) and methylmercury (increasing partitioning into porewater) means that elucidating the role of iron and sulfur loads as they define porewater sulfide is key to understanding sulfate's influence on MeHg production and partitioning in sulfate-impacted freshwater sediment.

9.
Environ Sci Process Impacts ; 18(6): 725-34, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27224550

RESUMEN

Increased deposition of atmospheric sulfate exacerbates methylmercury (MeHg) production in freshwater wetlands by stimulating methylating bacteria, but it is unclear how methylation in sub-boreal wetlands is impacted by chronically elevated sulfate inputs, such as through mine discharges. The purpose of our study is to determine how sulfate discharges to wetlands from iron mining activities impact MeHg production. In this study, we compare spatial and temporal patterns in MeHg and associated geochemistry in two wetlands receiving contrasting loads of sulfate. Two orders of magnitude less sulfate in the un-impacted wetland create significant differences in acid-volatile sulfide and porewater sulfide; however, dissolved and solid-phase MeHg concentrations and methylation rate potentials (Kmeth) are statistically similar in both wetlands. Permitted mine pumping events flood the sulfate-impacted wetland with very high sulfate waters during the fall. In contrast to observations in sulfate-limited systems, this large input of sulfate to a chronically sulfate-impacted system led to significantly lower potential relative methylation rates, suggesting a predominance of demethylation processes over methylation processes during the sulfate loading. Overall, short-term measurements of methylation and demethylation potential are unrelated to gross measures of long-term MeHg accumulation, indicating a decoupling of short- and long-term process measurements and an overall disequilibrium in the systems. High sulfide accumulation, above ∼600-800 µg l(-1) sulfide, in the sulfate-impacted system lowers long-term MeHg accumulation, perhaps as a result of less bioavailable Hg-S complexes. Although continued research is required to determine how sulfate-limited freshwater wetlands might respond to new, large inputs of high-sulfate runoff from mining operations, chronically impacted wetlands do not appear to continually accumulate or produce MeHg at rates different from wetlands unimpacted by mining.


Asunto(s)
Bacterias/metabolismo , Compuestos de Metilmercurio/metabolismo , Minería , Sulfatos/efectos adversos , Contaminantes Químicos del Agua/efectos adversos , Contaminación Química del Agua/efectos adversos , Humedales , Monitoreo del Ambiente , Agua Dulce/química , Compuestos de Metilmercurio/análisis , Minnesota , Estaciones del Año , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Contaminación Química del Agua/análisis
10.
Sci Total Environ ; 568: 1157-1170, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27102272

RESUMEN

For the Western North America Mercury Synthesis, we compiled mercury records from 165 dated sediment cores from 138 natural lakes across western North America. Lake sediments are accepted as faithful recorders of historical mercury accumulation rates, and regional and sub-regional temporal and spatial trends were analyzed with descriptive and inferential statistics. Mercury accumulation rates in sediments have increased, on average, four times (4×) from 1850 to 2000 and continue to increase by approximately 0.2µg/m(2) per year. Lakes with the greatest increases were influenced by the Flin Flon smelter, followed by lakes directly affected by mining and wastewater discharges. Of lakes not directly affected by point sources, there is a clear separation in mercury accumulation rates between lakes with no/little watershed development and lakes with extensive watershed development for agricultural and/or residential purposes. Lakes in the latter group exhibited a sharp increase in mercury accumulation rates with human settlement, stabilizing after 1950 at five times (5×) 1850 rates. Mercury accumulation rates in lakes with no/little watershed development were controlled primarily by relative watershed size prior to 1850, and since have exhibited modest increases (in absolute terms and compared to that described above) associated with (regional and global) industrialization. A sub-regional analysis highlighted that in the ecoregion Northwestern Forest Mountains, <1% of mercury deposited to watersheds is delivered to lakes. Research is warranted to understand whether mountainous watersheds act as permanent sinks for mercury or if export of "legacy" mercury (deposited in years past) will delay recovery when/if emissions reductions are achieved.

11.
Glob Chang Biol ; 22(4): 1490-504, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26666434

RESUMEN

Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north-west of Ireland subject to different extents of forest plantation cover (4-64% of catchment area). (210)Pb-dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ(13)C) and nitrogen (δ(15)N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two- to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39-116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (ß-carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance.


Asunto(s)
Agricultura Forestal , Lagos/microbiología , Carbono/análisis , Criptófitas/aislamiento & purificación , Cianobacterias/aislamiento & purificación , Diatomeas/aislamiento & purificación , Fertilizantes , Sedimentos Geológicos/análisis , Irlanda , Nitrógeno/análisis , Pigmentos Biológicos/análisis
12.
Nat Commun ; 6: 10016, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26607672

RESUMEN

Northern forests are important ecosystems for carbon (C) cycling and lakes within them process and bury large amounts of organic-C. Current burial estimates are poorly constrained and may discount other shifts in organic-C burial driven by global change. Here we analyse a suite of northern lakes to determine trends in organic-C burial throughout the Anthropocene. We found burial rates increased significantly over the last century and are up to five times greater than previous estimates. Despite a correlation with temperature, warming alone did not explain the increase in burial, suggesting the importance of other drivers including atmospherically deposited reactive nitrogen. Upscaling mean lake burial rates for each time period to global northern forests yields up to 4.5 Pg C accumulated in the last 100 years--20% of the total burial over the Holocene. Our results indicate that lakes will become increasingly important for C burial under future global change scenarios.

13.
PLoS One ; 10(10): e0138805, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26466159

RESUMEN

Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are a new class of contaminants of emerging concern, but the relative roles of natural and anthropogenic sources remain uncertain. Polybrominated diphenyl ethers (PBDEs) are used as brominated flame retardants, and they are a potential source of OH-BDEs via oxidative transformations. OH-BDEs are also natural products in marine systems. In this study, OH-BDEs were measured in water and sediment of freshwater and coastal systems along with the anthropogenic wastewater-marker compound triclosan and its photoproduct dioxin, 2,8-dichlorodibenzo-p-dioxin. The 6-OH-BDE 47 congener and its brominated dioxin (1,3,7-tribromodibenzo-p-dioxin) photoproduct were the only OH-BDE and brominated dioxin detected in surface sediments from San Francisco Bay, the anthropogenically impacted coastal site, where levels increased along a north-south gradient. Triclosan, 6-OH-BDE 47, 6-OH-BDE 90, 6-OH-BDE 99, and (only once) 6'-OH-BDE 100 were detected in two sediment cores from San Francisco Bay. The occurrence of 6-OH-BDE 47 and 1,3,7-tribromodibenzo-p-dioxin sediments in Point Reyes National Seashore, a marine system with limited anthropogenic impact, was generally lower than in San Francisco Bay surface sediments. OH-BDEs were not detected in freshwater lakes. The spatial and temporal trends of triclosan, 2,8-dichlorodibenzo-p-dioxin, OH-BDEs, and brominated dioxins observed in this study suggest that the dominant source of OH-BDEs in these systems is likely natural production, but their occurrence may be enhanced in San Francisco Bay by anthropogenic activities.


Asunto(s)
Contaminación Ambiental/análisis , Agua Dulce/química , Sedimentos Geológicos/química , Éteres Difenilos Halogenados/aislamiento & purificación , Agua de Mar/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cromatografía Liquida , Dioxinas/aislamiento & purificación , Monitoreo del Ambiente , Retardadores de Llama/aislamiento & purificación , Humanos , Bifenilos Polibrominados/aislamiento & purificación , San Francisco , Espectrometría de Masas en Tándem , Triclosán/aislamiento & purificación
14.
Environ Sci Technol ; 48(12): 6533-43, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24819278

RESUMEN

Human activities over the last several centuries have transferred vast quantities of mercury (Hg) from deep geologic stores to actively cycling earth-surface reservoirs, increasing atmospheric Hg deposition worldwide. Understanding the magnitude and fate of these releases is critical to predicting how rates of atmospheric Hg deposition will respond to future emission reductions. The most recently compiled global inventories of integrated (all-time) anthropogenic Hg releases are dominated by atmospheric emissions from preindustrial gold/silver mining in the Americas. However, the geophysical evidence for such large early emissions is equivocal, because most reconstructions of past Hg-deposition have been based on lake-sediment records that cover only the industrial period (1850-present). Here we evaluate historical changes in atmospheric Hg deposition over the last millennium from a suite of lake-sediment cores collected from remote regions of the globe. Along with recent measurements of Hg in the deep ocean, these archives indicate that atmospheric Hg emissions from early mining were modest as compared to more recent industrial-era emissions. Although large quantities of Hg were used to extract New World gold and silver beginning in the 16th century, a reevaluation of historical metallurgical methods indicates that most of the Hg employed was not volatilized, but rather was immobilized in mining waste.


Asunto(s)
Atmósfera/química , Sedimentos Geológicos/química , Oro/aislamiento & purificación , Industrias , Lagos/química , Mercurio/análisis , Minería , Plata/aislamiento & purificación , Contaminantes Atmosféricos/análisis , Américas , Geografía , Actividades Humanas , Humanos , Contaminantes Químicos del Agua/análisis
15.
Environ Pollut ; 184: 62-72, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24035911

RESUMEN

Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg.


Asunto(s)
Cubierta de Hielo/química , Mercurio/análisis , Ríos/química , Salmón/metabolismo , Contaminantes Químicos del Agua/análisis , Humedales , Alaska , Animales , Biota , Ecosistema , Monitoreo del Ambiente , Mercurio/metabolismo , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo
16.
Environ Sci Technol ; 47(9): 4181-8, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23597056

RESUMEN

Both cinnabar (HgS) and metallic mercury (Hg(0)) were important resources throughout Andean prehistory. Cinnabar was used for millennia to make vermillion, a red pigment that was highly valued in pre-Hispanic Peru; metallic Hg(0) has been used since the mid-16th century to conduct mercury amalgamation, an efficient process of extracting precious metals from ores. However, little is known about which cinnabar deposits were exploited by pre-Hispanic cultures, and the environmental consequences of Hg mining and amalgamation remain enigmatic. Here we use Hg isotopes to source archeological cinnabar and to fingerprint Hg pollution preserved in lake sediment cores from Peru and the Galápagos Islands. Both pre-Inca (pre-1400 AD) and Colonial (1532-1821 AD) archeological artifacts contain cinnabar that matches isotopically with cinnabar ores from Huancavelica, Peru, the largest cinnabar-bearing district in Central and South America. In contrast, the Inca (1400-1532 AD) artifacts sampled are characterized by a unique Hg isotopic composition. In addition, preindustrial (i.e., pre-1900 AD) Hg pollution preserved in lake sediments matches closely the isotopic composition of cinnabar from the Peruvian Andes. Industrial-era Hg pollution, in contrast, is distinct isotopically from preindustrial emissions, suggesting that pre- and postindustrial Hg emissions may be distinguished isotopically in lake sediment cores.


Asunto(s)
Cultura , Compuestos de Mercurio , Mercurio , Arqueología , Sedimentos Geológicos/química , Historia Antigua , Isótopos , Minería , Perú , Contaminantes Químicos del Agua/análisis
17.
Environ Sci Technol ; 47(4): 1833-43, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23320506

RESUMEN

When discharged into surface waters via wastewater effluents, triclosan, the antimicrobial agent in handsoaps, and chlorinated triclosan derivatives (CTDs, formed during disinfection with chlorine) react photochemically to form polychlorinated dibenzo-p-dioxins. To evaluate the historical exposure of waters to these compounds, the levels of triclosan, CTDs, and their derived dioxins were determined in sediment cores collected from wastewater-impacted Minnesota lakes. The accumulation rates and temporal trends of triclosan, CTDs, and dioxins in aquatic sediments were found to be a function of historical wastewater treatment operations and lake system scale. Cores collected from large-scale riverine systems with many wastewater sources recorded increasing concentrations of triclosan, CTDs, and their derived dioxins since the patent of triclosan in 1964. In small-scale lakes with a single wastewater source, the trends were directly attributed to increased triclosan use, local improvements in treatment, and changes in wastewater disinfection since the 1960s. In the lake with no wastewater input, no triclosan or CTDs were detected. Overall, concentrations of triclosan, CTDs, and their dioxins were higher in small-scale systems, reflecting a greater degree of wastewater impact. In cores collected in northern MN, the four dioxins derived from triclosan are present prior to the patent of triclosan, suggesting a secondary source. It is clear, however, that triclosan and CTDs are the dominant source of these congeners after 1965 in systems impacted by wastewater.


Asunto(s)
Dioxinas/química , Sedimentos Geológicos/química , Dibenzodioxinas Policloradas/análogos & derivados , Triclosán/análisis , Contaminantes Químicos del Agua/análisis , Lagos/química , Minnesota , Dibenzodioxinas Policloradas/análisis , Triclosán/análogos & derivados , Aguas Residuales/análisis
18.
Sci Total Environ ; 448: 132-40, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23153822

RESUMEN

Our previous work has documented a correlation between Hg concentrations and (210)Pb activity measured in wet deposition that might be used to help apportion sources of Hg in precipitation. Here we present the results of a 27-month precipitation collection effort using co-located samplers for Hg and (210)Pb designed to assess this hypothesis. Study sites were located on the east and west coasts of North America, in the continental interior, and on the Florida Peninsula. Relatively high variability in Hg/(210)Pb ratios was found at all sites regionally and seasonally (e.g., overall: 0.99-9.13ngdpm(-1)). The ratio of average volume-weighted Hg concentrations and (210)Pb activities showed consistent trends (higher in impacted area), with Glacier Bay in southeast Alaska, exhibiting the lowest value. Assuming that Glacier Bay represents a benchmark for a site with no regional contribution, we estimate less than 50% of the Hg input was "global" at the Seattle and Florida sites. Differences in Hg/(210)Pb in wet deposition could be due to either a regional/local source contribution of Hg, or a regional/local enhancement in the removal of Hg from the atmosphere (i.e., oxidants), however, this approach is not capable of discerning between these two possibilities. Thus, this method of source apportionment represents an estimate of the maximal amount of Hg contributed by regional sources and may be limited in regions of deep convective mixing.


Asunto(s)
Contaminantes Ambientales/análisis , Plomo/análisis , Mercurio/análisis , Lluvia/química , Movimientos del Aire , Atmósfera/química , Canadá , Monitoreo del Ambiente , Contaminantes Ambientales/química , Geografía , Plomo/química , Mercurio/química , Estados Unidos
19.
Ecology ; 93(10): 2155-64, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23185877

RESUMEN

Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests might be affected by mixing depth. Comparative lake surveys and growth rate experiments revealed that these species respond to lake thermal structure when nitrogen is sufficient, with species optima ranging from shallower to deeper mixing depths. The diatom-based mixing depth model was applied to sedimentary diatom profiles extending back to 1750 AD in two lakes with moderate nitrate concentrations but differing climate settings. Thermal reconstructions were consistent with expected changes, with shallower mixing depths inferred for an alpine lake where treeline has advanced, and deeper mixing depths inferred for a boreal lake where wind strength has increased. The inference model developed here provides a new tool to expand and refine understanding of climate-induced changes in lake ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Lagos , Canadá , Diatomeas , Fósiles , Nitrógeno , Especificidad de la Especie , Temperatura , Factores de Tiempo , Estados Unidos
20.
Environ Sci Technol ; 46(12): 6663-71, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22578022

RESUMEN

Between 2001 and 2008 we experimentally manipulated atmospheric sulfate-loading to a small boreal peatland and monitored the resulting short and long-term changes in methylmercury (MeHg) production. MeHg concentrations and %MeHg (fraction of total-Hg (Hg(T)) present as MeHg) in the porewaters of the experimental treatment reached peak values within a week of sulfate addition and then declined as the added sulfate disappeared. MeHg increased cumulatively over time in the solid-phase peat, which acted as a sink for newly produced MeHg. In 2006 a "recovery" treatment was created by discontinuing sulfate addition to a portion of the experimentally treated section to assess how MeHg production might respond to decreased sulfate loads. Four years after sulfate additions ceased, MeHg concentrations and %MeHg had declined significantly from 2006 values in porewaters and peat, but remained elevated relative to control levels. Mosquito larvae collected from each treatment at the end of the experiment exhibited Hg(T) concentrations reflective of MeHg levels in the peat and porewaters where they were collected. The proportional responses of invertebrate Hg(T) to sulfate deposition rates demonstrate that further controls on sulfur emissions may represent an additional means of mitigating Hg contamination in fish and wildlife across low-sulfur landscapes.


Asunto(s)
Compuestos de Metilmercurio/análisis , Sulfitos/análisis , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...