Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(30): e2310665, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386292

RESUMEN

The development of non-precious metal-based electrodes that actively and stably support the oxygen evolution reaction (OER) in water electrolysis systems remains a challenge, especially at low pH levels. The recently published study has conclusively shown that the addition of haematite to H2SO4 is a highly effective method of significantly reducing oxygen evolution overpotential and extending anode life. The far superior result is achieved by concentrating oxygen evolution centres on the oxide particles rather than on the electrode. However, unsatisfactory Faradaic efficiencies of the OER and hydrogen evolution reaction (HER) parts as well as the required high haematite load impede applicability and upscaling of this process. Here it is shown that the same performance is achieved with three times less metal oxide powder if NiO/H2SO4 suspensions are used along with stainless steel anodes. The reason for the enormous improvement in OER performance by adding NiO to the electrolyte is the weakening of the intramolecular O─H bond in the water molecules, which is under the direct influence of the nickel oxide suspended in the electrolyte. The manipulation of bonds in water molecules to increase the tendency of the water to split is a ground-breaking development, as shown in this first example.

2.
J Chromatogr A ; 1714: 464526, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38071876

RESUMEN

Over the last years, inverse gas chromatography (IGC) proved to be a versatile and sensitive analytical technique for physicochemical properties. However, the comparability of results obtained by different users and devices remains a topic for debate. This is the first time, an interlaboratory study using different types of IGC instruments is reported. Eight organizations with different IGC devices defined a common lab measurement protocol to analyse two standard materials, silica and lactose. All data was collected in a standard result form and has been treated identically with the objective to identify experimentally observed differences and not potentially different data treatments. The calculated values of the dispersive surface energy vary quite significantly (silica: 22 mJ/m2 - 34 mJ/m2, lactose 37 mJ/m2 - 51 mJ/m2) and so do the ISP values and retention volumes for both materials. This points towards significant and seemingly undiscovered differences in the operation of the instruments and the obtained underlying primary data, even under the premise of standard conditions. Variations are independent of the instrument type and uncertainties in flow rates or the injected quantities of probe molecules may be potential factors for the differences. This interlaboratory study demonstrates that the IGC is a very sensitive analytical tool, which detects minor changes, but it also shows that for a proper comparison, the measurement conditions have to be checked with great care. A publicly available standard protocol and material, for which this study can be seen as a starting point, is still needed to judge on the measurements and the resulting parameters more objectively.


Asunto(s)
Lactosa , Dióxido de Silicio , Propiedades de Superficie , Lactosa/química , Reproducibilidad de los Resultados , Cromatografía de Gases/métodos
3.
Materials (Basel) ; 16(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37109882

RESUMEN

When impregnated with manganiferous precursors, γ-Al2O3 may be converted into α-Al2O3 under relatively mild and energy-saving conditions. In this work, a manganese assisted conversion to corundum at temperatures as low as 800 °C is investigated. To observe the alumina phase transition, XRD and solid-state 27Al-MAS-NMR are applied. By post-synthetical treatment in concentrated HCl, residual manganese is removed up to 3 wt.-%. Thereby, α-Al2O3 with a high specific surface area of 56 m2 g-1 is obtained after complete conversion. Just as for transition alumina, thermal stability is an important issue for corundum. Long-term stability tests were performed at 750 °C for 7 days. Although highly porous corundum was synthesized, the porosity decreased with time at common process temperatures.

4.
Front Chem ; 11: 1084046, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065825

RESUMEN

Surface-modified porous silica is a well-established composite material. To improve its embedding and application behavior, adsorption studies of various probe molecules have been performed using the technique of inverse gas chromatography (IGC). For this purpose, IGC experiments were carried out in the infinite dilution mode on macro-porous micro glass spheres before and after surface modification with (3-mercaptopropyl)trimethoxysilane. To provide information about the polar interactions between probe molecules and the silica surface, in particular, eleven polar molecules have been injected. In summary, the free surface energy for pristine silica ( γ S t o t a l = 229 mJ/m2) and for (3-mercaptopropyl)trimethoxysilane-modified silica ( γ S t o t a l = 135 mJ/m2) indicates a reduced wettability after surface modification. This is due to the reduction of the polar component of the free surface energy ( γ S S P ) from 191 mJ/m2 to 105 mJ/m2. Simultaneously, with the reduction of surface silanol groups caused by surface modification of silica and, therefore, the decrease in polar interactions, a substantial loss of Lewis acidity was observed by various IGC approaches. Experiments with all silica materials have been conducted at temperatures in the range from 90°C to 120°C to determine the thermodynamic parameters, such as adsorption enthalpy ( Δ H a d s ) and adsorption entropy ( Δ S a d s ), using the Arrhenius regression procedure evaluating the IGC data. With the help of the enthalpy-entropy compensation, two types of adsorption complexes are assumed between polar probe molecules and the silica surface because of different isokinetic temperatures. Identical adsorption complexes with an isokinetic temperature of 370°C have been assigned to alkanes and weakly interacting polar probes such as benzene, toluene, dichloromethane, and chloroform. Polar probe molecules with typical functional groups such as OH, CO, and CN, having the ability to form hydrogen bonds to the silica surface, exhibit a lower isokinetic temperature of 60°C. Quantum chemical calculations of the probe molecules on a non-hydroxylated and hydroxylated silica cluster supported the formation of hydrogen bonds in the case of a strong polar adsorption complex with a bonding distance of 1.7 nm-1.9 nm to the silica surface.

5.
Gels ; 9(1)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36661837

RESUMEN

In this study, we present a detailed comparison between a conventional supercritical drying process and an evaporative drying technique for hierarchically organized porous silica gel monoliths. These gels are based on a model system synthesized by the aqueous sol-gel processing of an ethylene-glycol-modified silane, resulting in a cellular, macroporous, strut-based network comprising anisotropic, periodically arranged mesopores formed by microporous amorphous silica. The effect of the two drying procedures on the pore properties (specific surface area, pore volume, and pore widths) and on the shrinkage of the monolith is evaluated through a comprehensive characterization by using nitrogen physisorption, electron microscopy, and small-angle X-ray scattering. It can clearly be demonstrated that for the hierarchically organized porous solids, the evaporative drying procedure can compete without the need for surface modification with the commonly applied supercritical drying in terms of the material and textural properties, such as specific surface area and pore volume. The thus obtained materials deliver a high specific surface area and exhibit overall comparable or even improved pore characteristics to monoliths prepared by supercritical drying. Additionally, the pore properties can be tailored to some extent by adjusting the drying conditions, such as temperature.

6.
Small ; 19(10): e2207674, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36651001

RESUMEN

High-temperature treatment of functional nanomaterials, through postsynthesis calcination, often represents an important step to unlock their full potential. However, such calcination steps usually severely limit the preparation of colloidal solutions of the nanoparticles due to the formation of sintered agglomerates. Herein, a simple route is reported to obtain colloidal solutions of calcined n-conductive antimony doped tin oxide (ATO) as well as titanium dioxide (TiO2 ) nanoparticles without the need for additional sacrificial materials. This is achieved by making use of the reduced contact between individual nanoparticles when they are assembled into aerogels. Following the calcination of the aerogels at 500 °C, redispersion of the nanoparticles into stable colloidal solutions with various solvents can be achieved. Although a slight degree of sintering is inevitable, the size of the resulting aggregates in solution is still remarkably small with values below 30 nm.

7.
ACS Omega ; 7(37): 33375-33384, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36157771

RESUMEN

Since the recent discovery of the template-free synthesis of porous boron nitride, research on the synthesis and application of the material has steadily increased. Nevertheless, the formation mechanism of boron nitride is not yet fully understood. Especially for the complex precursor decomposition of urea-based turbostratic boron nitride (t-BN), a profound understanding is still lacking. Therefore, in this publication, we investigate the influence of different common pre-heating temperatures of 100, 200, 300, and 400 °C on the subsequent properties of t-BN. We show that the structure and porosity of t-BN can be changed by preheating, where a predominantly mesoporous material can be obtained. Within these investigations, the sample BN-300/2 depicts the highest mesopore surface area of 242 m2 g-1 with a low amount of micropores compared to other BNs. By thermal gravimetric analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy, valid details about the formation of intermediates, types of chemical bonds, and the generation of t-BN are delivered. Hence, we conclude that the formation of a mesoporous material arises due to a more complete decomposition of the urea precursor by pre-heating.

8.
ACS Appl Mater Interfaces ; 14(39): 44992-45004, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36130011

RESUMEN

Integration of solvothermal reaction products into complex thin-layer architectures is frequently achieved by combinations of layer transfer and subtractive lithography, whereas direct additive substrate patterning with solvothermal reaction products has remained challenging. We report reactive additive capillary stamping under solvothermal conditions as a parallel contact-lithographic access to patterns of solvothermal reaction products in thin-layer configurations. To this end, corresponding precursor inks are infiltrated into mechanically robust mesoporous aerogel stamps derived from double-network hydrogels. The stamp is then brought into contact with a substrate to be patterned under solvothermal reaction conditions inside an autoclave. The precursor ink forms liquid bridges between the topographic surface pattern of the stamp and the substrate. Evaporation-driven enrichment of the precursors in these liquid bridges, along with their liquid-bridge-guided conversion into the solvothermal reaction products, yields large-area submicron patterns of the solvothermal reaction products replicating the stamp topography. For example, we prepared thin hybrid films, which contained ordered monolayers of superparamagnetic submicron nickel ferrite dots prepared by solvothermal capillary stamping surrounded by nickel electrodeposited in a second orthogonal substrate functionalization step. The submicron nickel ferrite dots acted as a magnetic hardener, halving the remanence of the ferromagnetic nickel layer. In this way, thin-layer electromechanical systems, transformers, and positioning systems may be customized.

9.
Langmuir ; 38(36): 10963-10974, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36037488

RESUMEN

The deliquescence behavior of salt nanocrystals is different from that of bulk crystals. Here, we report the first systematic measurements of the deliquescence relative humidity (DRH) of sodium chloride crystals confined in various nanoporous silica materials with pore diameters ranging from 8 to 89 nm. Deliquescence humidities were determined by water vapor sorption measurements. In comparison to the DRH of bulk NaCl crystals (75.3% RH), the DRH decreases from 73 to 58% as the pore size decreases from 89 to 8 nm. In contrast, according to literature data, the DRH of NaCl aerosol nanoparticles increases with decreasing crystal size. A thermodynamic model approach, based on the combined use of an ion-interaction model, the Laplace equation, and the Kelvin equation, is used to calculate the influence of the confinement in nanopores on the solid-liquid and liquid-vapor phase equilibria. These calculations reveal that the main reason for the decrease in the DRH in nanopores is the concave curvature of the liquid-vapor interface that is formed during deliquescence. The same model approach shows that the increase in DRH of nanosized aerosol particles is due to the convex curvature of the liquid-vapor interface, whereas the effect of increases in solubility with decreasing crystal size is small.

10.
Pharmaceutics ; 14(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35745757

RESUMEN

Transdermal drug delivery systems (TDDSs) play important roles in therapy due to distinct advantages over other forms and types of drug application. While common TDDS patches mainly consist of polymeric matrices so far, inorganic carriers show numerous advantages such as high mechanical stability, possible re-use and re-loading of drugs, and a broad chemical compatibility with therapeutically relevant compounds and chemical enhancers. Mesoporous glasses can be prepared in different monolithic shapes, and offer a particularly wide range of possible pore volumes, pore diameters, and specific surface areas. Further, they show high loading capacities and favorable physical, technical, and biological properties. Here, we explored for the first time monolithic SiO2-based carriers as sustained release systems of therapeutic drugs. In an ideally stirred vessel as model system, we systematically analyzed the influence of pore diameter, pore volume, and the dimensions of glass monoliths on the loading and sustained release of different drugs, including anastrozole, xylazine, imiquimod, levetiracetam, and flunixin. Through multilinear regression, we calculated the influence of different parameters on drug loading and diffusion coefficients. The systematic variation of the mesoporous glass properties revealed pore volumes and drug loading concentrations, but not pore diameter or pore surface area as important parameters of drug loading and release kinetics. Other relevant effectors include the occurrence of lateral diffusion within the carrier and drug-specific properties such as adsorption. The structure-property relationships derived from our data will allow further fine-tuning of the systems according to their desired properties as TDDS, thus guiding towards optimal systems for their use in transdermal drug applications.

11.
Phys Chem Chem Phys ; 24(23): 14488-14497, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661180

RESUMEN

Applications in catalysis, adsorption and separation require high surface areas as provided by mesoporous materials. Particularly attractive is the class of silica-based mesoporous glasses, which are mechanically and chemically very stable and post-synthetically modifiable allowing specific surface properties to be introduced. One of the catalytically relevant moieties is the sulfonic acid group. To optimize the performance of mesoporous glass systems, analytical methods are required to determine the state of surface modification and its effect on the porosity. To this end, we here propose a specific combination of spectroscopic methods: The porosity during the introduction of thiol functionalities and subsequent oxidation into sulfonic acid groups on the surface of porous micro glass beads is investigated using hyperpolarized 129Xe NMR, revealing that during the two modification steps the textural properties are preserved. The grafting mode as well as the surface coverage are determined using 29Si MAS NMR. The oxidation step is demonstrated to be complete as probed by Raman spectroscopy and 13C MAS NMR. Our combined analysis demonstrates the successful and complete surface modification as well as the maintenance of the free accessibility of the mesopore system.

12.
Materials (Basel) ; 15(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35407683

RESUMEN

Alterations of fluid phase transitions in porous materials are conventionally employed for the characterization of mesoporous solids. In the first approximation, this may be based on the application of the Kelvin equation for gas-liquid and the Gibbs-Thomson equation for solid-liquid phase equilibria for obtaining pore size distributions. Herein, we provide a comparative analysis of different phase coexistences measured in mesoporous silica solids with different pore sizes and morphology. Instead of comparing the resulting pore size distributions, we rather compare the transitions directly by using a common coordinate for varying the experiment's thermodynamic parameters based on the two equations mentioned. Both phase transitions in these coordinates produce comparable results for mesoporous solids of relatively large pore sizes. In contrast, marked differences are found for materials with smaller pore sizes. This illuminates the fact that, with reducing confinement sizes, thermodynamic fluctuations become increasingly important and different for different equilibria considered. In addition, we show that in the coordinate used for analysis, mercury intrusion matches perfectly with desorption and freezing transitions.

13.
Data Brief ; 38: 107428, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34632020

RESUMEN

Shape-stabilized phase change materials (ss-PCMs) based on silica and butyl stearate were thermally enhanced via the addition of different hexagonal boron nitride particles (BN) to the in situ sol-gel synthesis. The dataset is used in conjunction with the experimental data of the influence of the particle size and surface area of BN on the thermal and mechanical properties of ss-PCMs discussed in Marske et al. (2021). To study the effect of the different BN particles on the hydrolysis degree of the silica network and on the chemical nature of the porogens sodium dodecyl sulfate and poly(vinyl alcohol) used for the ss-PCM synthesis, the ss-PCM samples are measured via High Power Decoupling (HPDEC) Magic Angle Spinning (MAS) 29Si NMR and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, respectively. Additionally, data of the influence of BN on the thermal properties is presented as thermogravimetric analysis (TG). The 29Si MAS NMR spectra are referenced to tetramethylsilane and show the different silica species in ppm. The different value of wavenumber and intensity of each reference and ss-PCM sample is listed in the IR spectra. The decomposition points of the ss-PCMs are calculated from the TG data via OriginLab. The spectra and data can be used as a reference for other researchers and engineers to use in synthesizing ss-PCMs based on silica and other polymeric materials or as reference for pure BN, SDS, stabilized silica sol and PVA.

14.
Langmuir ; 37(12): 3521-3537, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33724041

RESUMEN

Porous solids used in practical applications often possess structural disorder over broad length scales. This disorder strongly affects different properties of the substances confined in their pore spaces. Quantifying structural disorder and correlating it with the physical properties of confined matter is thus a necessary step toward the rational use of porous solids in practical applications and process optimization. The present work focuses on recent advances made in the understanding of correlations between the phase state and geometric disorder in nanoporous solids. We overview the recently developed statistical theory for phase transitions in a minimalistic model of disordered pore networks: linear chains of pores with statistical disorder. By correlating its predictions with various experimental observations, we show that this model gives notable insight into collective phenomena in phase-transition processes in disordered materials and is capable of explaining self-consistently the majority of the experimental results obtained for gas-liquid and solid-liquid equilibria in mesoporous solids. The potentials of the theory for improving the gas sorption and thermoporometry characterization of porous materials are discussed.

15.
Materials (Basel) ; 14(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578972

RESUMEN

A new preparation concept of a partially porous solid-state bilayer electrolyte (BE) for high-temperature sodium-ion batteries has been developed. The porous layer provides mechanical strength and is infiltrated with liquid and highly conductive NaAlCl4 salt, while the dense layer prevents short circuits. Both layers consist, at least partially, of Na-ß-alumina. The BEs are synthesized by a three-step procedure, including a sol-gel synthesis, the preparation of porous, calcined bulk material, and spin coating to deposit a dense layer. A detailed study is carried out to investigate the effect of polyethylene oxide (PEO) concentration on pore size and crystallization of the bulk material. The microstructure and crystallographic composition are verified for all steps via mercury intrusion, X-ray diffraction, and scanning electron microscopy. The porous bulk material exhibits an unprecedented open porosity for a NaxAlOy bilayer-system of ≤57% with a pore size of ≈200-300 nm and pore volume of ≤0.3 cm3∙g-1. It contains high shares of crystalline α-Al2O3 and Na-ß-alumina. The BEs are characterized by impedance spectroscopy, which proved an increase of ionic conductivity with increasing porosity and increasing Na-ß-alumina phase content in the bulk material. Ion conductivity of up to 0.10 S∙cm-1 at 300 °C is achieved.

16.
Materials (Basel) ; 13(7)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290130

RESUMEN

This article combines a systematic literature review on the fabrication of macroporous α-Al2O3 with increased specific surface area with recent results from our group. Publications claiming the fabrication of α-Al2O3 with high specific surface areas (HSSA) are comprehensively assessed and critically reviewed. An account of all major routes towards HSSA α-Al2O3 is given, including hydrothermal methods, pore protection approaches, dopants, anodically oxidized alumina membranes, and sol-gel syntheses. Furthermore, limitations of these routes are disclosed, as thermodynamic calculations suggest that γ-Al2O3 may be the more stable alumina modification for ABET > 175 m2/g. In fact, the highest specific surface area unobjectionably reported to date for α-Al2O3 amounts to 16-24 m2/g and was attained via a sol-gel process. In a second part, we report on some of our own results, including a novel sol-gel synthesis, designated as mutual cross-hydrolysis. Besides, the Mn-assisted α-transition appears to be a promising approach for some alumina materials, whereas pore protection by carbon filling kinetically inhibits the formation of α-Al2O3 seeds. These experimental results are substantiated by attempts to theoretically calculate and predict the specific surface areas of both porous materials and nanopowders.

17.
Chemistry ; 26(49): 11220-11230, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32196769

RESUMEN

Herein, it is reported how pseudomorphic transformation of divinylbenzene (DVB)-bridged organosilica@controlled pore glasses (CPG) offers the possibility to generate hierarchically porous organosilica/silica hybrid materials. CPG is utilized to provide granular shape/size and macroporosity and the macropores of the CPG is impregnated with organosilica phase, forming hybrid system. By subsequent pseudomorphic transformation, an ordered mesopore phase is generated while maintaining the granular shape and macroporosity of the CPG. Surface areas and mesopore sizes in the hierarchical structure are tunable by the choice of the surfactant and transformation time. Two-dimensional magic angle spinning (MAS) NMR spectroscopy demonstrated that micellar-templating affects both organosilica and silica phases and pseudomorphic transformation induces phase transition. A double-layer structure of separate organosilica and silica layers is established for the impregnated material, while a single monophase consisting of randomly distributed T and Q silicon species at the molecular level is identified for the pseudomorphic transformed materials.

18.
RSC Adv ; 10(6): 3072-3083, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35497767

RESUMEN

The confinement of phase change materials (PCMs) in construction materials has recently solved leakage, supercooling and low thermal conductivity problems in the industrial use of PCMs as monolithic thermal energy storage materials. To produce shape-stabilized PCMs (ss-PCMs) as crack-free monoliths, less than 15-30% v/v pure or encapsulated PCMs can be used in construction materials. Therefore, the heat storage capacity of these monolithic ss-PCM boards is comparatively low. In this study, we synthesized a novel class of monolithic ss-PCM boards with high compressive strength of 0.7 MPa at 30 °C (1.2 MPa at 10 °C), high PCM loadings of 86 wt%, and latent heats in the range of 100 J g-1 via a porogen-assisted in situ sol-gel process. We confined butyl stearate (BS) as PCM in a core-shell-like silica matrix via stabilized silica sol as silica source, sodium dodecyl sulfate as surfactant and poly(vinyl alcohol) as co-polymer. The ss-PCMs obtained are hydrophobic, thermally stable up to 320 °C and perform 6000 state transitions from solid to liquid and vice versa, without losing melting or freezing enthalpies. We analyzed the silica structure in the ss-PCMs to understand in detail the reasons for the high mechanical stability. The silica structure in ss-PCMs consists of spherical meso- and macropores up to 10 000 nm filled with PCM, formed mostly by BS droplets in water as templates during gelation. With an increasing BS amount in the synthesis of ss-PCMs, the total nanopore volume filled with PCM in ss-PCMs increases, resulting in higher compressive strengths up to 500% and thermal conductivities up to 60%.

19.
Front Chem ; 7: 767, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850299

RESUMEN

3-dimensionally interconnected macroporous carbons are versatile materials that can be used in catalysis, electrochemical devices, and separation technology. Herein, the synthesis of a nitrogen doped carbonaceous material with a well-defined nanoarchitecture via nano-casting is demonstrated. A novel carbon source, a task-specific protic salt, has been proposed to create nitrogen doped carbon by direct carbonization within the pores of controlled macroporous glass. After the removal of macroporous glass from the composite using an aqueous sodium hydroxide solution and upon further heat treatment, an oxidation resistant doped carbon with high nitrogen content (6 mass %) is obtained. The materials formed during the different stages of the nano-casting process exhibit interesting properties such as hierarchical porosity, very high nitrogen content (15 mass %), and increased oxidational stability. A combination of different properties to create tailor-made materials for different applications using this technique is possible.

20.
Sci Rep ; 9(1): 19982, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882695

RESUMEN

One of the major routes to synthesize macroporous α-Al2O3 is the sol-gel process in presence of templates. Templates include polymers as well as carboxylic acids, such as citric acid. By careful choice of the template, pore diameters can be adjusted between 110 nm and several µm. We report the successful establishment of plain short-chain dicarboxylic acids (DCA) as porogenes in the sol-gel synthesis of macroporous α-Al2O3. By this extension of the recently developed synthesis route, a very precise control of pore diameters is achieved, in addition to enhanced macropore volumes in α-Al2O3. The formation mechanism thereof is closely related to the one postulated for citric acid, as thermal analyses show. However, since branching in the DCA-linked alumina nuclei is not possible, close monomodal pore width distributions are attained, which are accompanied by enhanced pore volumes. This is a significant improvement in terms of controlled enhanced porosity in the synthesis of macroporous α-Al2O3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA