Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
FEBS Lett ; 598(10): 1235-1251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38268392

RESUMEN

Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.


Asunto(s)
Gotas Lipídicas , Mitocondrias , Saccharomyces cerevisiae , Mitocondrias/metabolismo , Gotas Lipídicas/metabolismo , Animales , Humanos , Saccharomyces cerevisiae/metabolismo , Ácidos Grasos/metabolismo , Peroxisomas/metabolismo , Metabolismo de los Lípidos
3.
Nat Cell Biol ; 25(8): 1157-1172, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37400497

RESUMEN

Lipid mobilization through fatty acid ß-oxidation is a central process essential for energy production during nutrient shortage. In yeast, this catabolic process starts in the peroxisome from where ß-oxidation products enter mitochondria and fuel the tricarboxylic acid cycle. Little is known about the physical and metabolic cooperation between these organelles. Here we found that expression of fatty acid transporters and of the rate-limiting enzyme involved in ß-oxidation is decreased in cells expressing a hyperactive mutant of the small GTPase Arf1, leading to an accumulation of fatty acids in lipid droplets. Consequently, mitochondria became fragmented and ATP synthesis decreased. Genetic and pharmacological depletion of fatty acids phenocopied the arf1 mutant mitochondrial phenotype. Although ß-oxidation occurs in both mitochondria and peroxisomes in mammals, Arf1's role in fatty acid metabolism is conserved. Together, our results indicate that Arf1 integrates metabolism into energy production by regulating fatty acid storage and utilization, and presumably organelle contact sites.


Asunto(s)
Mitocondrias , Peroxisomas , Animales , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Ácidos Grasos/metabolismo , Oxidación-Reducción , Metabolismo de los Lípidos/genética , Homeostasis , Mamíferos/metabolismo
4.
Biol Open ; 10(3)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753324

RESUMEN

COPI (coatomer complex I) coated vesicles are involved in Golgi-to-ER and intra-Golgi trafficking pathways, and mediate retrieval of ER resident proteins. Functions and components of the COPI-mediated trafficking pathways, beyond the canonical set of Sec/Arf proteins, are constantly increasing in number and complexity. In mammalian cells, GORAB, SCYL1 and SCYL3 proteins regulate Golgi morphology and protein glycosylation in concert with the COPI machinery. Here, we show that Cex1, homologous to the mammalian SCYL proteins, is a component of the yeast COPI machinery, by interacting with Sec27, Sec28 and Sec33 (Ret1/Cop1) proteins of the COPI coat. Cex1 was initially reported to mediate channeling of aminoacylated tRNA outside of the nucleus. Our data show that Cex1 localizes at membrane compartments, on structures positive for the Sec33 α-COP subunit. Moreover, the Wbp1 protein required for N-glycosylation and interacting via its di-lysine motif with the Sec27 ß'-COP subunit is mis-targeted in cex1Δ deletion mutant cells. Our data point to the possibility of developing Cex1 yeast-based models to study neurodegenerative disorders linked to pathogenic mutations of its human homologue SCYL1.


Asunto(s)
Proteína Coat de Complejo I/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Unión al ARN/metabolismo , Cromatografía Liquida , Proteína Coat de Complejo I/genética , Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/genética , Eliminación de Gen , Aparato de Golgi/metabolismo , Espacio Intracelular , Espectrometría de Masas , Mutación , Proteínas de Transporte Nucleocitoplasmático/genética , Unión Proteica , Transporte de Proteínas , Proteómica/métodos , Proteínas de Unión al ARN/genética
5.
Elife ; 92020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32657755

RESUMEN

A single nuclear gene can be translated into a dual localized protein that distributes between the cytosol and mitochondria. Accumulating evidences show that mitoproteomes contain lots of these dual localized proteins termed echoforms. Unraveling the existence of mitochondrial echoforms using current GFP (Green Fluorescent Protein) fusion microscopy approaches is extremely difficult because the GFP signal of the cytosolic echoform will almost inevitably mask that of the mitochondrial echoform. We therefore engineered a yeast strain expressing a new type of Split-GFP that we termed Bi-Genomic Mitochondrial-Split-GFP (BiG Mito-Split-GFP). Because one moiety of the GFP is translated from the mitochondrial machinery while the other is fused to the nuclear-encoded protein of interest translated in the cytosol, the self-reassembly of this Bi-Genomic-encoded Split-GFP is confined to mitochondria. We could authenticate the mitochondrial importability of any protein or echoform from yeast, but also from other organisms such as the human Argonaute 2 mitochondrial echoform.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/fisiología , Citosol/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Mitocondrias/fisiología , Transporte de Proteínas
6.
Methods ; 113: 91-104, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27725303

RESUMEN

By definition, cytosolic aminoacyl-tRNA synthetases (aaRSs) should be restricted to the cytosol of eukaryotic cells where they supply translating ribosomes with their aminoacyl-tRNA substrates. However, it has been shown that other translationally-active compartments like mitochondria and plastids can simultaneously contain the cytosolic aaRS and its corresponding organellar ortholog suggesting that both forms do not share the same organellar function. In addition, a fair number of cytosolic aaRSs have also been found in the nucleus of cells from several species. Hence, these supposedly cytosolic-restricted enzymes have instead the potential to be multi-localized. As expected, in all examples that were studied so far, when the cytosolic aaRS is imported inside an organelle that already contains its bona fide corresponding organellar-restricted aaRSs, the cytosolic form was proven to exert a nonconventional and essential function. Some of these essential functions include regulating homeostasis and protecting against various stresses. It thus becomes critical to assess meticulously the subcellular localization of each of these cytosolic aaRSs to unravel their additional roles. With this objective in mind, we provide here a review on what is currently known about cytosolic aaRSs multi-compartmentalization and we describe all commonly used protocols and procedures for identifying the compartments in which cytosolic aaRSs relocalize in yeast and human cells.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Núcleo Celular/enzimología , Citosol/enzimología , Mitocondrias/enzimología , Ribosomas/enzimología , Saccharomyces cerevisiae/enzimología , Aminoacil-ARNt Sintetasas/clasificación , Aminoacil-ARNt Sintetasas/genética , Anticuerpos/química , Western Blotting/métodos , Compartimento Celular , Fraccionamiento Celular/métodos , Línea Celular , Núcleo Celular/ultraestructura , Citosol/ultraestructura , Técnica del Anticuerpo Fluorescente/métodos , Expresión Génica , Humanos , Mitocondrias/ultraestructura , Transporte de Proteínas , Ribosomas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura
7.
Sci Rep ; 6: 35766, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27767081

RESUMEN

Among Candida species, the opportunistic fungal pathogen Candida glabrata has become the second most common causative agent of candidiasis in the world and a major public health concern. Yet, few molecular tools and resources are available to explore the biology of C. glabrata and to better understand its virulence during infection. In this study, we describe a robust experimental strategy to generate loss-of-function mutants in C. glabrata. The procedure is based on the development of three main tools: (i) a recombinant strain of C. glabrata constitutively expressing the CRISPR-Cas9 system, (ii) an online program facilitating the selection of the most efficient guide RNAs for a given C. glabrata gene, and (iii) the identification of mutant strains by the Surveyor technique and sequencing. As a proof-of-concept, we have tested the virulence of some mutants in vivo in a Drosophila melanogaster infection model. Our results suggest that yps11 and a previously uncharacterized serine/threonine kinase are involved, directly or indirectly, in the ability of the pathogenic yeast to infect this model host organism.


Asunto(s)
Sistemas CRISPR-Cas , Candida glabrata/genética , Candida glabrata/patogenicidad , Ingeniería Genética/métodos , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antígenos de Diferenciación/genética , Proteasas de Ácido Aspártico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Femenino , Proteínas Fúngicas/genética , Genoma Fúngico , Recombinación Homóloga , Mutación INDEL , Proteínas Serina-Treonina Quinasas/genética , Receptores Inmunológicos/genética , Virulencia/genética
8.
J Chromatogr Sci ; 54(4): 653-63, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26860395

RESUMEN

In this work, we describe the characterization of a quantity-limited sample (100 ng) of yeast mitochondria by shotgun bottom-up proteomics. Sample characterization was carried out by sheathless capillary electrophoresis, equipped with a high sensitivity porous tip and coupled to tandem mass spectrometry (CESI-MS-MS) and concomitantly with a state-of-art nano flow liquid chromatography coupled to a similar mass spectrometry (MS) system (nanoLC-MS-MS). With single injections, both nanoLC-MS-MS and CESI-MS-MS 60 min-long separation experiments allowed us to identify 271 proteins (976 unique peptides) and 300 proteins (1,765 unique peptides) respectively, demonstrating a significant specificity and complementarity in identification depending on the physicochemical separation employed. Such complementary, maximizing the number of analytes detected, presents a powerful tool to deepen a biological sample's proteomic characterization. A comprehensive study of the specificity provided by each separating technique was also performed using the different properties of the identified peptides: molecular weight, mass-to-charge ratio (m/z), isoelectric point (pI), sequence coverage or MS-MS spectral quality enabled to determine the contribution of each separation. For example, CESI-MS-MS enables to identify larger peptides and eases the detection of those having extreme pI without impairing spectral quality. The addition of peptides, and therefore proteins identified by both techniques allowed us to increase significantly the sequence coverages and then the confidence of characterization. In this study, we also demonstrated that the two yeast enolase isoenzymes were both characterized in the CESI-MS-MS data set. The observation of discriminant proteotypic peptides is facilitated when a high number of precursors with high-quality MS-MS spectra are generated.


Asunto(s)
Electroforesis Capilar/métodos , Mitocondrias/metabolismo , Proteómica , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masa por Ionización de Electrospray
9.
Mol Cell ; 56(6): 763-76, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25453761

RESUMEN

In eukaryotic cells, oxidative phosphorylation involves multisubunit complexes of mixed genetic origin. Assembling these complexes requires an organelle-independent synchronizing system for the proper expression of nuclear and mitochondrial genes. Here we show that proper expression of the F1FO ATP synthase (complex V) depends on a cytosolic complex (AME) made of two aminoacyl-tRNA synthetases (cERS and cMRS) attached to an anchor protein, Arc1p. When yeast cells adapt to respiration the Snf1/4 glucose-sensing pathway inhibits ARC1 expression triggering simultaneous release of cERS and cMRS. Free cMRS and cERS relocate to the nucleus and mitochondria, respectively, to synchronize nuclear transcription and mitochondrial translation of ATP synthase genes. Strains releasing asynchronously the two aminoacyl-tRNA synthetases display aberrant expression of nuclear and mitochondrial genes encoding subunits of complex V resulting in severe defects of the oxidative phosphorylation mechanism. This work shows that the AME complex coordinates expression of enzymes that require intergenomic control.


Asunto(s)
ATPasas de Translocación de Protón/genética , Saccharomyces cerevisiae/genética , Núcleo Celular/genética , Expresión Génica , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Complejos Multienzimáticos , Multimerización de Proteína , ATPasas de Translocación de Protón/metabolismo , Proteínas de Unión al ARN/fisiología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/fisiología
10.
FEBS Lett ; 588(23): 4268-78, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25315413

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and ancient enzymes, mostly known for their essential role in generating aminoacylated tRNAs. During the last two decades, many aaRSs have been found to perform additional and equally crucial tasks outside translation. In metazoans, aaRSs have been shown to assemble, together with non-enzymatic assembly proteins called aaRSs-interacting multifunctional proteins (AIMPs), into so-called multi-synthetase complexes (MSCs). Metazoan MSCs are dynamic particles able to specifically release some of their constituents in response to a given stimulus. Upon their release from MSCs, aaRSs can reach other subcellular compartments, where they often participate to cellular processes that do not exploit their primary function of synthesizing aminoacyl-tRNAs. The dynamics of MSCs and the expansion of the aaRSs functional repertoire are features that are so far thought to be restricted to higher and multicellular eukaryotes. However, much can be learnt about how MSCs are assembled and function from apparently 'simple' organisms. Here we provide an overview on the diversity of these MSCs, their composition, mode of assembly and the functions that their constituents, namely aaRSs and AIMPs, exert in unicellular organisms.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Evolución Molecular , Estructura Cuaternaria de Proteína , Animales , Humanos , Estructura Terciaria de Proteína , Especificidad de la Especie
11.
Nucleic Acids Res ; 42(9): 6052-63, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24692665

RESUMEN

Yeast mitochondrial Gln-mtRNAGln is synthesized by the transamidation of mischarged Glu-mtRNAGln by a non-canonical heterotrimeric tRNA-dependent amidotransferase (AdT). The GatA and GatB subunits of the yeast AdT (GatFAB) are well conserved among bacteria and eukaryota, but the GatF subunit is a fungi-specific ortholog of the GatC subunit found in all other known heterotrimeric AdTs (GatCAB). Here we report the crystal structure of yeast mitochondrial GatFAB at 2.0 Å resolution. The C-terminal region of GatF encircles the GatA-GatB interface in the same manner as GatC, but the N-terminal extension domain (NTD) of GatF forms several additional hydrophobic and hydrophilic interactions with GatA. NTD-deletion mutants displayed growth defects, but retained the ability to respire. Truncation of the NTD in purified mutants reduced glutaminase and transamidase activities when glutamine was used as the ammonia donor, but increased transamidase activity relative to the full-length enzyme when the donor was ammonium chloride. Our structure-based functional analyses suggest the NTD is a trans-acting scaffolding peptide for the GatA glutaminase active site. The positive surface charge and novel fold of the GatF-GatA interface, shown in this first crystal structure of an organellar AdT, stand in contrast with the more conventional, negatively charged bacterial AdTs described previously.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Proteínas Mitocondriales/química , Transferasas de Grupos Nitrogenados/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Transaminasas/química , Dominio Catalítico , Cristalografía por Rayos X , Mitocondrias/enzimología , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/química , ARN de Transferencia/química
12.
Biochimie ; 100: 95-106, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24440477

RESUMEN

Mitochondria originate from the α-proteobacterial domain of life. Since this unique event occurred, mitochondrial genomes of protozoans, fungi, plants and metazoans have highly derived and diverged away from the common ancestral DNA. These resulting genomes highly differ from one another, but all present-day mitochondrial DNAs have a very reduced coding capacity. Strikingly however, ATP production coupled to electron transport and translation of mitochondrial proteins are the two common functions retained in all mitochondrial DNAs. Paradoxically, most components essential for these two functions are now expressed from nuclear genes. Understanding how mitochondrial translation evolved in various eukaryotic models is essential to acquire new knowledge of mitochondrial genome expression. In this review, we provide a thorough analysis of the idiosyncrasies of mitochondrial translation as they occur between organisms. We address this by looking at mitochondrial codon usage and tRNA content. Then, we look at the aminoacyl-tRNA-forming enzymes in terms of peculiarities, dual origin, and alternate function(s). Finally we give examples of the atypical structural properties of mitochondrial tRNAs found in some organisms and the resulting adaptive tRNA-protein partnership.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Genoma Mitocondrial , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , Adenosina Trifosfato/biosíntesis , Alveolados/genética , Alveolados/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Bacterias/genética , Bacterias/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Codón , Regulación de la Expresión Génica , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...