Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38258920

RESUMEN

We show that ionic conduction properties of a multipore nanofluidic memristor can be controlled not only by the amplitude and frequency of an external driving signal but also by chemical gating based on the electrolyte concentration, presence of divalent and trivalent cations, and multi-ionic systems in single and mixed electrolytes. In addition, we describe the modulation of current rectification and hysteresis phenomena, together with neuromorphic conductance responses to voltage pulses, in symmetric and asymmetric external solutions. In our case, memristor conical pores act as nanofluidic diodes modulated by ionic solution characteristics due to the surface charge-regulated ionic transport. The above facts suggest potential sensing and actuating applications based on the conversion between ionic and electronic signals in bioelectrochemical hybrid circuits.

2.
ChemSusChem ; 16(13): e202202361, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029553

RESUMEN

With the current global projection of over 130 million electric vehicles (EVs), there soon will be a need for battery waste management. Especially for all-solid-state lithium-ion batteries (lithium ASSBs), aspects of waste management and circular economy have not been addressed so far. Within such ASSBs, the use of solid-electrolytes like garnet-type Li6.5 La3 Zr1.5 Ta0.5 O12 (LLZTO) may shift focus on strategies to recover not only the transition metal elements but also elements like La/Zr/Ta. In this work, we present a two-step recycling approach using citric acid as the leaching agent to separate and recover the individual components of a model cell comprising of Li4 Ti5 O12 (LTO) anode, Li6.5 La3 Zr1.5 Ta0.5 O12 (LLZTO) garnet electrolyte and LiNi1/3 Mn1/3 Co1/3 O2 (NMC) cathode. We observe that by adjusting the concentration of citric acid, it was possible to separate the materials from each other without strong mixing of individual phases and also to maintain their principle performance characteristics. Thus, the process developed has a potential for upscaling and can guide towards considering separation capability of battery components in the development of lithium ASSBs.


Asunto(s)
Ácido Cítrico , Litio , Iones , Suministros de Energía Eléctrica , Electricidad
3.
Bioelectrochemistry ; 152: 108445, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086711

RESUMEN

We study the cation transport against an external concentration gradient (cation pumping) that occurs in conical nanopores when zero-average oscillatory and white noise potentials are externally applied. This pumping, based on the electrically asymmetric nanostructure, is characterized here by a load capacitor arrangement. In the case of white noise signals, the conical nanopore acts as an electrical valve that allows extraction of order from chaos. No molecular carriers, specific ion pumps, and competitive ion-binding phenomena are required. The nanopore conductance on/off states mimic those of the voltage-gated ion channels in the cell membrane. These channels allow modulating membrane potentials and ionic concentration gradients along oscillatory pulses in circadian rhythms and the cell cycle. We show that the combination of asymmetric nanostructures with load capacitors can be useful for the understanding of nanofluidic processes based on bioelectrochemical gradients.


Asunto(s)
Proteínas de Transporte de Catión , Nanoporos , Transporte Iónico , Electricidad , Cationes
4.
J Chem Phys ; 157(14): 144702, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36243538

RESUMEN

We have studied experimentally the electrical conductance-voltage curves of negatively and positively charged conical nanopores bathed in ionic solutions with monovalent, divalent, and trivalent cations at electrochemically and biologically relevant ionic concentrations. To better understand the interaction between the pore surface charge and the mobile ions, both single salts and salt mixtures have been considered. We have paid attention to the effects on the conductance of the cation valency, the pore charge asymmetry, and the pore charge inversion phenomena due to trivalent ions, both in single salts and salt mixtures. In addition, we have described how small concentrations of multivalent ions can tune the nanopore conductance due to monovalent majority ions, together with the effect of these charges on the additivity of ionic conductance and fluoride-induced negative differential conductance phenomena. This compilation and discussion of previously presented experimental data offers significant insights on the interaction between fixed and mobile charges confined in nanoscale volumes and should be useful in establishing and checking new models for describing ionic transport in the vicinity of charged surfaces.


Asunto(s)
Nanoporos , Cationes , Conductividad Eléctrica , Fluoruros , Sales (Química) , Cloruro de Sodio
5.
Materials (Basel) ; 15(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35407743

RESUMEN

In this study, sintered silicon carbide is machined on a high-precision milling machine with a high-speed spindle, closed-loop linear drives and friction-free micro gap hydrostatics. A series of experiments was undertaken varying the relevant process parameters such as feedrate, cutting speed and chip thickness. For this, the milled surfaces are characterized in a process via an acoustic emission sensor. The milled surfaces were analyzed via confocal laser scanning microscopy and the ISO 25178 areal surface quality parameters such as Sa, Sq and Smr are determined. Moreover, scanning electron microscopy was used to qualitatively characterize the surfaces, but also to identify sub-surface damages such as grooves, breakouts and pitting. Raman laser spectroscopy is used to identify possible amorphization and changes to crystal structure. We used grazing incidence XRD to analyze the crystallographic structure and scanning acoustic microscopy to analyze sub-surface damages. A polycrystalline diamond tool was able to produce superior surfaces compared to diamond grinding with an areal surface roughness Sa of below 100 nm in a very competitive time frame. The finished surface exhibits a high gloss and reflectance. It can be seen that chip thickness and cutting speed have a major influence on the resulting surface quality. The undamaged surface in combination with a small median chip thickness is indicative of a ductile cutting regime.

6.
ChemistryOpen ; 11(3): e202100274, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35199490

RESUMEN

All-solid-state lithium ion batteries (ASS-LIBs) are promising due to their safety and higher energy density as compared to that of conventional LIBs. Over the next few decades, tremendous amounts of spent ASS-LIBs will reach the end of their cycle life and would require recycling in order to address the waste management issue along with reduced exploitation of rare elements. So far, only very limited studies have been conducted on recycling of ASS-LIBS. Herein, we investigate the recycling of the Li7 La3 Zr2 O12 (LLZO) solid-state electrolyte in a LiFePO4 /LLZO/Li4 Ti5 O12 system using a hydrometallurgical approach. Our results show that different concentration of the leaching solutions can significantly influence the final product of the recycling process. However, it was possible to recover relatively pure La2 O3 and ZrO2 to re-synthesize the cubic LLZO phase, whose high purity was confirmed by XRD measurements.


Asunto(s)
Reciclaje , Administración de Residuos , Suministros de Energía Eléctrica , Iones , Litio
7.
ACS Appl Mater Interfaces ; 13(45): 54447-54455, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34735108

RESUMEN

We describe experimentally and theoretically the fluoride-induced negative differential resistance (NDR) phenomena observed in conical nanopores operating in aqueous electrolyte solutions. The threshold voltage switching occurs around 1 V and leads to sharp current drops in the nA range with a peak-to-valley ratio close to 10. The experimental characterization of the NDR effect with single pore and multipore samples concern different pore radii, charge concentrations, scan rates, salt concentrations, solvents, and cations. The experimental fact that the effective radius of the pore tip zone is of the same order of magnitude as the Debye length for the low salt concentrations used here is suggestive of a mixed pore surface and bulk conduction regime. Thus, we propose a two-region conductance model where the mobile cations in the vicinity of the negative pore charges are responsible for the surface conductance, while the bulk solution conductance is assumed for the pore center region.

8.
Nanotechnology ; 33(4)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34644697

RESUMEN

The effect of organic solvents on the ion track-etching of polyimide (PI) membranes is studied to enhance the nanopore fabrication process and the control over pore diameter growth. To this end, two approaches are employed to investigate the influence of organic solvents on the nanopore fabrication in PI membranes. In the first approach, the heavy ion irradiated PI samples are pretreated with organic solvents and then chemically etched with sodium hypochlorite (NaOCl) solution, resulting up to ∼4.4 times larger pore size compared to untreated ones. The second approach is based on a single-step track-etching process where the etchant (NaOCl) solution contains varying amounts of organic solvent (by vol%). The experimental data shows that a significant increase in both the bulk-etch and track-etch rates is observed by using the etchant mixture, which leads to ∼47% decrease in the nanopore fabrication time. This enhancement of nanopore fabrication process in PI membranes would open up new opportunities for their implementation in various potential applications.

9.
Small ; 17(33): e2101066, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34216425

RESUMEN

The development of flexible and reconfigurable sensors that can be readily tailored toward different molecular analytes constitutes a key goal and formidable challenge in biosensing. In this regard, synthetic nanopores have emerged as potent physical transducers to convert molecular interactions into electrical signals. Yet, systematic strategies to functionalize their surfaces with receptor proteins for the selective detection of molecular analytes remain scarce. Addressing these limitations, a general strategy is presented to immobilize nanobodies in a directional fashion onto the surface of track-etched nanopores exploiting copper-free click reactions and site-specific protein conjugation systems. The functional immobilization of three different nanobodies is demonstrated in ligand binding experiments with green fluorescent protein, mCherry, and α-amylase (α-Amy) serving as molecular analytes. Ligand binding is resolved using a combination of optical and electrical recordings displaying quantitative dose-response curves. Furthermore, a change in surface charge density is identified as the predominant molecular factor that underlies quantitative dose-responses for the three different protein analytes in nanoconfined geometries. The devised strategy should pave the way for the systematic functionalization of nanopore surfaces with biological receptors and their ability to detect a variety of analytes for diagnostic purposes.


Asunto(s)
Técnicas Biosensibles , Nanoporos , Electricidad , Proteínas
10.
Sci Rep ; 11(1): 8974, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903627

RESUMEN

The practice of estimating the transfer coefficient ([Formula: see text]) and the exchange current ([Formula: see text]) by arbitrarily placing a straight line on Tafel plots has led to high variance in these parameters between different research groups. Generating Tafel plots by finding kinetic current, [Formula: see text] from the conventional mass transfer correction method does not guarantee an accurate estimation of the [Formula: see text] and [Formula: see text]. This is because a substantial difference in values of [Formula: see text] and [Formula: see text] can arise from only minor deviations in the calculated values of [Formula: see text]. These minor deviations are often not easy to recognise in polarisation curves and Tafel plots. Recalling the IUPAC definition of [Formula: see text] , the Tafel plots can be alternatively represented as differential Tafel plots (DTPs) by taking the first order differential of Tafel plots with respect to overpotential. Without further complex processing of the existing raw data, many crucial observations can be made from DTP which is otherwise very difficult to observe from Tafel plots. These for example include a) many perfectly looking experimental linear Tafel plots (R2 > 0.999) can give rise to incorrect kinetic parameters b) substantial differences in values of [Formula: see text] and [Formula: see text] can arise when the limiting current ([Formula: see text]) is just off by 5% while performing the mass transfer correction c) irrespective of the magnitude of the double layer charging current ([Formula: see text]), the Tafel plots can still get significantly skewed when the ratio of [Formula: see text] is small. Hence, in order to determine accurate values of [Formula: see text] and [Formula: see text], we show how the DTP approach can be applied to experimental polarisation curves having well defined [Formula: see text], poorly defined [Formula: see text] and no [Formula: see text] at all.

11.
Nanotechnology ; 32(24)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33662941

RESUMEN

A significant increase of rare earth transition metals concentration in water reservoirs caused by the dumping of household materials and petrol-producing industries is a potential threat to human and aquatic life. Here, we demonstrate a model nanofluidic channel for the Lanthanum (La3+) ions recognition. To this end, a single conical nanochannel is first modified with poly allylamine hydrochloride followed by immobilization of synthesized ZnO nanoparticles on the channel surface through electrostatic adsorption. A significant change in the nanopore electrical readout is noticed when the functionalized nanochannel is exposed to an electrolyte solution having La3+cations. The distinctive response by the nanofluidic system towards La3+ions is assumed to be due to ionic radii, hexagonal crystal structure, and associated basal plane interaction between anchored ZnO nanoparticles and La3+ions. We anticipate that this nanofluidic system can be used as a model to design highly sensitive metal ion detection devices.

12.
J Colloid Interface Sci ; 591: 384-395, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33631526

RESUMEN

Nickel cobalt layered double hydroxide (NiCo-LDH)-based materials have recently emerged as catalysts for important electrochemical applications. However, they frequently suffer from low electrical conductivity and agglomeration, which in turn impairs their performance. Herein, we present a catalyst design based on integrated, self-supported nickel nanotube networks (Ni-NTNWs) loaded with NiCo-LDH nanosheets, which represents a binder-free, hierarchically nanostructured electrode architecture combining continuous conduction paths and openly accessible macropores of low tortuosity with an ultrahigh density of active sites. Similar to macroscale metallic foams, the NTNWs serve as three-dimensionally interconnected, robust frameworks for the deposition of active material, but are structured in the submicron range. Our synthesis is solely based on scalable approaches, namely templating with commercial track-etched membranes, electroless plating, and electrodeposition. Morphological and compositional characterization proved the successful decoration of the inner and outer nanotube surfaces with a conformal NiCo-LDH layer. Ni-NTNW electrodes and hydroxide-decorated variants showed excellent performance in glucose sensing. The highest activity was achieved for the catalyst augmented with NiCo-LDH nanosheets, which surpassed the modification with pure Ni(OH)2. Despite its low thickness of 20 µm, the optimized catalyst layer provided an outstanding sensitivity of 4.6 mA mM-1 cm-2, a low detection limit of 0.2 µM, a fast response time of 5.3 s, high selectivity and stability, and two linear ranges covering four orders of magnitude, up to 2.5 mM analyte. As such, derivatized interconnected metal nano-networks represent a promising design paradigm for highly miniaturized yet effective catalyst electrodes and electrochemical sensors.

13.
RSC Adv ; 11(15): 8636-8642, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35423366

RESUMEN

Electroless plating is a versatile technique for the facile and controlled synthesis of metallic thin films and nanostructures. While there are numerous known procedures involving transition metals, reports on the electroless plating of post-transition metals are particularly rare, even without considering specific nanofabrication requirements. In this work we outline the development of a remarkably stable electroless plating bath for nanoscale bismuth coatings, based on the reduction of Bi-EDTA by borane dimethylamine. Its suitability for nanostructure fabrication is showcased by coating ion-track etched polycarbonate membranes, creating Bi tubes with sub-micron diameters in the process. This procedure could be particularly useful for the development and improvement of high surface-area Bi based catalysts and heavy metal sensors.

14.
ACS Appl Mater Interfaces ; 12(44): 49992-50001, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33104340

RESUMEN

This work demonstrates the confinement of porous metal-organic framework (HKUST-1) on the surface and walls of track-etched nanochannel in polyethylene terephthalate (np-PET) membrane using a liquid-phase epitaxy (LPE) technique. The composite membrane (HKUST-1/np-PET) exhibits defect-free MOF growth continuity, strong attachment of MOF to the support, and a high degree of flexibility. The high flexibility and the strong confinement of the MOF in composite membrane results from (i) the flexible np-PET support, (ii) coordination attachment between HKUST-1 and the support, and (iii) the growth of HKUST-1 crystal in nanoconfined geometries. The MOF has a preferred growth orientation with a window size of 3.5 Å, resulting in a clear cut-off of CO2 from natural gas and olefins. The experimental results and DFT calculations show that the restricted diffusion of gases only takes place through the nanoporous MOF confined in the np-PET substrate. This research thereby provides a new perspective to grow other porous MOFs in artificially prepared nanochannels for the realization of continuous, flexible, and defect-free membranes for various applications.

15.
ACS Nano ; 14(9): 11309-11318, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32806050

RESUMEN

Owing to their large surface area, continuous conduction paths, high activity, and pronounced anisotropy, nanowires are pivotal for a wide range of applications, yet far from thermodynamic equilibrium. Their susceptibility toward degradation necessitates an in-depth understanding of the underlying failure mechanisms to ensure reliable performance under operating conditions. In this study, we present an in-depth analysis of the thermally triggered Plateau-Rayleigh-like morphological instabilities of electrodeposited, polycrystalline, 20-40 nm thin platinum nanowires using in situ transmission electron microscopy in a controlled temperature regime, ranging from 25 to 1100 °C. Nanowire disintegration is heavily governed by defects, while the initially present, frequent but small thickness variations do not play an important role and are overridden later during reshaping. Changes of the exterior wire morphology are preceded by shifts in the internal nanostructure, including grain boundary straightening, grain growth, and the formation of faceted voids. Surprisingly, the nanowires segregate into two domain types, one being single-crystalline and essentially void-free, while the other preserves void-pinned grain boundaries. While the single-crystalline domains exhibit fast Pt transport, the void-containing domains are unexpectedly stable, accumulate platinum by surface diffusion, and act as nuclei for the subsequent nanowire splitting. This study highlights the vital role of defects in Plateau-Rayleigh-like thermal transformations, whose evolution not only accompanies but guides the wire reshaping. Thus, defects represent strong parameters for controlling the nanowire decay and must be considered for devising accurate models and simulations.

16.
Chemistry ; 26(39): 8511-8517, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32196774

RESUMEN

A nanopore-based CuII -sensing system is reported that allows for an ultrasensitive and selective detection of CuII with the possibility for a broad range of applications, for example in medical diagnostics. A fluorescent ATCUN-like peptide 5/6-FAM-Dap-ß-Ala-His is employed to selectively bind CuII ions in the presence of NiII and ZnII and was crafted into ion track-etched nanopores. Upon CuII binding the fluorescence of the peptide sensor is quenched, permitting the detection of CuII in solution. The ion transport characteristics of peptide-modified nanopore are shown to be extremely sensitive and selective towards CuII allowing to sense femtomolar CuII concentrations in human urine mimics. Washing with EDTA fully restores the CuII -binding properties of the sensor, enabling multiple repetitive measurements. The robustness of the system clearly has the potential to be further developed into an easy-to-use, lab-on-chip CuII -sensing device, which will be of great importance for bedside diagnosis and monitor of CuII levels in patients with copper-dysfunctional homeostasis.


Asunto(s)
Cobre/análisis , Iones/química , Péptidos/química , Cobre/química , Cobre/metabolismo , Fluorescencia , Humanos , Péptidos/metabolismo
17.
Chempluschem ; 85(3): 587-594, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32216097

RESUMEN

We report a nanofluidic device for the label-free detection of phosphoprotein (PPn) analytes. To achieve this goal, a metal ion chelator, namely 4-[bis(2-pyridylmethyl)aminomethyl]aniline (DPA-NH2 ) compound was synthesized. Single asymmetric nanofluidic channels were fabricated in polyethylene terephthalate (PET) membranes. The chelator (DPA-NH2 ) molecules are subsequently immobilized on the nanochannel surface, followed by the zinc ion complexation to afford DPA-Zn2+ chelates, which act as ligand moieties for the specific binding of phosphoproteins. The success of the chemical reaction and biomolecular recognition process that occur in a confined geometry can be monitored from the changes in electrical readout of the nanochannel. The nanofluidic sensor has the ability to sensitively and specifically detect lower concentrations (≥1 nM) of phosphoprotein (albumin and α-casein) in the surrounding environment as evidenced from the significant decrease in ion current flowing through the nanochannels. However, dephosphoproteins such as lysozyme and dephospho-α-casein even at higher concentration (>1 µM) could not induce any significant change in the transmembrane ion flux. This observation indicated the sensitivity and specificity of the proposed nanofluidic sensor towards PPn proteins, and has potential for use in differentiating between phosphoproteins and dephosphoproteins.


Asunto(s)
Compuestos de Anilina/química , Complejos de Coordinación/química , Nanoestructuras/química , Fosfoproteínas/análisis , Zinc/química , Albúminas/análisis , Caseínas/análisis , Quelantes/química , Electricidad , Concentración de Iones de Hidrógeno , Transporte Iónico , Nanotecnología , Tereftalatos Polietilenos/química , Propiedades de Superficie
18.
J Phys Chem Lett ; 11(7): 2530-2534, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32160752

RESUMEN

The membrane potential (Vmem), defined as the electric potential difference across a membrane flanked by two different salt solutions, is central to electrochemical energy harvesting and conversion. Also, Vmem and the ionic concentrations that establish it are important to biophysical chemistry because they regulate crucial cell processes. We study experimentally and theoretically the salt dependence of Vmem in single conical nanopores for the case of multi-ionic systems of different ionic charge numbers. The major advances of this work are (i) to measure Vmem using a series of ions (Na+, K+, Ca2+, Cl-, and SO42-) that are of interest to both energy conversion and cell biochemistry, (ii) to describe the physicochemical effects resulting from the nanostructure asymmetry, (iii) to develop a theoretical model for multi-ionic systems, and (iv) to quantify the contributions of the liquid junction potentials established in the salt bridges to the total cell membrane potential.


Asunto(s)
Iones/química , Potenciales de la Membrana , Nanoporos , Técnicas Electroquímicas
19.
Soft Matter ; 15(47): 9682-9689, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31720668

RESUMEN

Ionic circuits composed of nanopores functionalized with polyelectrolyte chains can operate in aqueous solutions, thus allowing the control of electrical signals and information processing in physiological environments. We demonstrate experimentally and theoretically that different orientations of single-pore membranes with the same and opposite surface charges can operate reliably in series, parallel, and mixed series-parallel arrangements of two, three, and four nanofluidic diodes using schemes similar to those of solid-state electronics. We consider also different experimental procedures to externally tune the fixed charges of the molecular chains functionalized on the pore surface, showing that single-pore membranes can be used efficiently in ionic circuitry with distinct ionic environments.

20.
Anal Chim Acta ; 1086: 14-15, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31561789
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA