Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276401

RESUMEN

Effective retraining of foot elevation and forward propulsion is a critical aspect of gait rehabilitation therapy after stroke, but valuable feedback to enhance these functions is often absent during home-based training. To enable feedback at home, this study assesses the validity of an inertial measurement unit (IMU) to measure the foot strike angle (FSA), and explores eight different kinematic parameters as potential indicators for forward propulsion. Twelve people with stroke performed walking trials while equipped with five IMUs and markers for optical motion analysis (the gold standard). The validity of the IMU-based FSA was assessed via Bland-Altman analysis, ICC, and the repeatability coefficient. Eight different kinematic parameters were compared to the forward propulsion via Pearson correlation. Analyses were performed on a stride-by-stride level and within-subject level. On a stride-by-stride level, the mean difference between the IMU-based FSA and OMCS-based FSA was 1.4 (95% confidence: -3.0; 5.9) degrees, with ICC = 0.97, and a repeatability coefficient of 5.3 degrees. The mean difference for the within-subject analysis was 1.5 (95% confidence: -1.0; 3.9) degrees, with a mean repeatability coefficient of 3.1 (SD: 2.0) degrees. Pearson's r value for all the studied parameters with forward propulsion were below 0.75 for the within-subject analysis, while on a stride-by-stride level the foot angle upon terminal contact and maximum foot angular velocity could be indicative for the peak forward propulsion. In conclusion, the FSA can accurately be assessed with an IMU on the foot in people with stroke during regular walking. However, no suitable kinematic indicator for forward propulsion was identified based on foot and shank movement that could be used for feedback in people with stroke.


Asunto(s)
Accidente Cerebrovascular , Dispositivos Electrónicos Vestibles , Humanos , Marcha , Caminata , Pie , Fenómenos Biomecánicos
2.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850597

RESUMEN

Different methods exist to select strides that represent preferred, steady-state gait. The aim of this study was to identify the effect of different stride-selection methods on spatiotemporal gait parameters to analyze steady-state gait. A total of 191 patients with hip or knee osteoarthritis (aged 38-85) wearing inertial sensors walked back and forth over 10 m for two minutes. After the removal of strides in turns, five stride-selection methods were compared: (ALL) include all strides, others removed (REFERENCE) two strides around turns, (ONE) one stride around turns, (LENGTH) strides <63% of median stride length, and (SPEED) strides that fall outside the 95% confidence interval of gait speed over the strides included in REFERENCE. Means and SDs of gait parameters were compared for each trial against the most conservative definition (REFERENCE). ONE and SPEED definitions resulted in similar means and SDs compared to REFERENCE, while ALL and LENGTH definitions resulted in substantially higher SDs of all gait parameters. An in-depth analysis of individual strides showed that the first two strides after and last two strides before a turn were significantly different from steady-state walking. Therefore, it is suggested to exclude the first two strides around turns to assess steady-state gait.


Asunto(s)
Osteoartritis de la Cadera , Osteoartritis de la Rodilla , Humanos , Marcha , Caminata , Velocidad al Caminar
3.
Disabil Rehabil ; : 1-6, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36573399

RESUMEN

PURPOSE: The System Usability Scale (SUS) is the most commonly used questionnaire to assess usability of healthcare innovations but is not available in Dutch (D-SUS). This study aims to translate the SUS to Dutch and to determine its internal consistency, test-retest reliability, and construct validity in healthcare innovations focused on rehabilitation technologies. METHODS: Translation of the SUS was performed according to the WHO recommendations. Fifty-four participants filled out the D-SUS and Dutch Quebec User Evaluation of Satisfaction with assistive Technology (D-QUEST) twice. Internal consistency was assessed by Cronbach's alpha. Test-retest reliability was evaluated by Gwet's agreement coefficient (Gwet's AC2) on item scale, and Pearson correlation coefficient (PCC) for the overall D-SUS scores. Construct validity was assessed with the PCC between the D-SUS and D-QUEST overall scores (Netherlands Trial Register, ID: NL9169). RESULTS: After translation, Cronbach's alpha was 0.74. Gwet's AC2 was 0.68 and the PCC between the first and second overall D-SUS scores was 0.75. No significant difference in D-SUS score between the two measurements was found. Repeatability coefficient was 18.4. The PCC between the D-SUS and D-QUEST overall scores was 0.49. CONCLUSIONS: The D-SUS is a valid and reliable tool for usability assessment of healthcare innovations, specifically rehabilitation technologies.


Successful implementation of new rehabilitation technologies is partially dependent on good system usability.The System Usability Scale is translated to Dutch (D-SUS) to evaluate usability of healthcare innovations in the Netherlands.The D-SUS is a reliable and valid method to measure usability of rehabilitation technologies and eHealth applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...