Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36543374

RESUMEN

BACKGROUND: B cells play a pivotal role in regulating the immune response. The induction of B cell-mediated immunosuppressive function requires B cell activating signals. However, the mechanisms by which activated B cells mediate T-cell suppression are not fully understood. METHODS: We investigated the potential contribution of metabolic activity of activated B cells to T-cell suppression by performing in vitro experiments and by analyzing clinical samples using mass cytometry and single-cell RNA sequencing. RESULTS: Here we show that following activation, B cells acquire an immunoregulatory phenotype and promote T-cell suppression by metabolic competition. Activated B cells induced hypoxia in T cells in a cell-cell contact dependent manner by consuming more oxygen via an increase in their oxidative phosphorylation (OXPHOS). Moreover, activated B cells deprived T cells of glucose and produced lactic acid through their high glycolytic activity. Activated B cells thus inhibited the mammalian target of rapamycin pathway in T cells, resulting in suppression of T-cell cytokine production and proliferation. Finally, we confirmed the presence of tumor-associated B cells with high glycolytic and OXPHOS activities in patients with melanoma, associated with poor response to immune checkpoint blockade therapy. CONCLUSIONS: We have revealed for the first time the immunomodulatory effects of the metabolic activity of activated B cells and their possible role in suppressing antitumor T-cell responses. These findings add novel insights into immunometabolism and have important implications for cancer immunotherapy.


Asunto(s)
Linfocitos B , Linfocitos T , Inmunosupresores/farmacología , Sirolimus , Inmunoterapia
3.
Nat Med ; 28(10): 2133-2144, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36175679

RESUMEN

Trogocytosis is an active process that transfers surface material from targeted to effector cells. Using multiple in vivo tumor models and clinical data, we report that chimeric antigen receptor (CAR) activation in natural killer (NK) cells promoted transfer of the CAR cognate antigen from tumor to NK cells, resulting in (1) lower tumor antigen density, thus impairing the ability of CAR-NK cells to engage with their target, and (2) induced self-recognition and continuous CAR-mediated engagement, resulting in fratricide of trogocytic antigen-expressing NK cells (NKTROG+) and NK cell hyporesponsiveness. This phenomenon could be offset by a dual-CAR system incorporating both an activating CAR against the cognate tumor antigen and an NK self-recognizing inhibitory CAR that transferred a 'don't kill me' signal to NK cells upon engagement with their TROG+ siblings. This system prevented trogocytic antigen-mediated fratricide, while sparing activating CAR signaling against the tumor antigen, and resulted in enhanced CAR-NK cell activity.


Asunto(s)
Receptores Quiméricos de Antígenos , Antígenos de Neoplasias , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales , Receptores Quiméricos de Antígenos/metabolismo , Trogocitosis , Escape del Tumor
4.
Cell Rep ; 36(3): 109432, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34270918

RESUMEN

Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

5.
J Clin Invest ; 131(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34138753

RESUMEN

Glioblastoma multiforme (GBM), the most aggressive brain cancer, recurs because glioblastoma stem cells (GSCs) are resistant to all standard therapies. We showed that GSCs, but not normal astrocytes, are sensitive to lysis by healthy allogeneic natural killer (NK) cells in vitro. Mass cytometry and single-cell RNA sequencing of primary tumor samples revealed that GBM tumor-infiltrating NK cells acquired an altered phenotype associated with impaired lytic function relative to matched peripheral blood NK cells from patients with GBM or healthy donors. We attributed this immune evasion tactic to direct cell-to-cell contact between GSCs and NK cells via αv integrin-mediated TGF-ß activation. Treatment of GSC-engrafted mice with allogeneic NK cells in combination with inhibitors of integrin or TGF-ß signaling or with TGFBR2 gene-edited allogeneic NK cells prevented GSC-induced NK cell dysfunction and tumor growth. These findings reveal an important mechanism of NK cell immune evasion by GSCs and suggest the αv integrin/TGF-ß axis as a potentially useful therapeutic target in GBM.


Asunto(s)
Glioblastoma/inmunología , Integrinas/inmunología , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias/inmunología , Células Madre Neoplásicas/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Femenino , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/terapia , Xenoinjertos , Humanos , Integrinas/genética , Células Asesinas Naturales/patología , Masculino , Ratones , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Células Madre Neoplásicas/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/genética
6.
Clin Cancer Res ; 27(13): 3744-3756, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33986022

RESUMEN

PURPOSE: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoterapia , Células Asesinas Naturales , Leucemia , Linfoma , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Sangre/efectos de los fármacos , Sangre/inmunología , Células Cultivadas , Terapia Combinada , Citocinas/farmacología , Sangre Fetal/efectos de los fármacos , Sangre Fetal/inmunología , Inmunoterapia/métodos , Antígeno Ki-1/inmunología , Células Asesinas Naturales/inmunología , Leucemia/terapia , Linfoma/terapia , Receptores de IgG/inmunología
7.
Front Immunol ; 12: 631353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017325

RESUMEN

Acute graft-vs.-host (GVHD) disease remains a common complication of allogeneic stem cell transplantation with very poor outcomes once the disease becomes steroid refractory. Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for the treatment of GVHD, but so far this strategy has had equivocal clinical efficacy. Therapies using MSCs require optimization taking advantage of the plasticity of these cells in response to different microenvironments. In this study, we aimed to optimize cord blood tissue derived MSCs (CBti MSCs) by priming them using a regimen of inflammatory cytokines. This approach led to their metabolic reprogramming with enhancement of their glycolytic capacity. Metabolically reprogrammed CBti MSCs displayed a boosted immunosuppressive potential, with superior immunomodulatory and homing properties, even after cryopreservation and thawing. Mechanistically, primed CBti MSCs significantly interfered with glycolytic switching and mTOR signaling in T cells, suppressing T cell proliferation and ensuing polarizing toward T regulatory cells. Based on these data, we generated a Good Manufacturing Process (GMP) Laboratory protocol for the production and cryopreservation of primed CBti MSCs for clinical use. Following thawing, these cryopreserved GMP-compliant primed CBti MSCs significantly improved outcomes in a xenogenic mouse model of GVHD. Our data support the concept that metabolic profiling of MSCs can be used as a surrogate for their suppressive potential in conjunction with conventional functional methods to support their therapeutic use in GVHD or other autoimmune disorders.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular/fisiología , Sangre Fetal/citología , Enfermedad Injerto contra Huésped/prevención & control , Células Madre Mesenquimatosas/metabolismo , Animales , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/inmunología , Citocinas/farmacología , Femenino , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/inmunología , Ratones , Ratones Endogámicos NOD , Control de Calidad
8.
Front Immunol ; 12: 626098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717142

RESUMEN

Natural killer (NK) cells are innate lymphocytes recognized for their important role against tumor cells. NK cells expressing chimeric antigen receptors (CARs) have enhanced effector function against various type of cancer and are attractive contenders for the next generation of cancer immunotherapies. However, a number of factors have hindered the application of NK cells for cellular therapy, including their poor in vitro growth kinetics and relatively low starting percentages within the mononuclear cell fraction of peripheral blood or cord blood (CB). To overcome these limitations, we genetically-engineered human leukocyte antigen (HLA)-A- and HLA-B- K562 cells to enforce the expression of CD48, 4-1BBL, and membrane-bound IL-21 (mbIL21), creating a universal antigen presenting cell (uAPC) capable of stimulating their cognate receptors on NK cells. We have shown that uAPC can drive the expansion of both non-transduced (NT) and CAR-transduced CB derived NK cells by >900-fold in 2 weeks of co-culture with excellent purity (>99.9%) and without indications of senescence/exhaustion. We confirmed that uAPC-expanded research- and clinical-grade NT and CAR-transduced NK cells have higher metabolic fitness and display enhanced effector function against tumor targets compared to the corresponding cell fractions cultured without uAPCs. This novel approach allowed the expansion of highly pure GMP-grade CAR NK cells at optimal cell numbers to be used for adoptive CAR NK cell-based cancer immunotherapy.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Receptores Quiméricos de Antígenos/genética , Animales , Ingeniería Celular , Línea Celular Tumoral , Proliferación Celular , Citotoxicidad Inmunológica , Sangre Fetal , Antígenos HLA/genética , Humanos , Células K562 , Ratones , Ratones Noqueados , Receptores de Células Asesinas Naturales/metabolismo , Transcriptoma , Transducción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Blood ; 137(5): 624-636, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32902645

RESUMEN

Immune checkpoint therapy has resulted in remarkable improvements in the outcome for certain cancers. To broaden the clinical impact of checkpoint targeting, we devised a strategy that couples targeting of the cytokine-inducible Src homology 2-containing (CIS) protein, a key negative regulator of interleukin 15 (IL-15) signaling, with fourth-generation "armored" chimeric antigen receptor (CAR) engineering of cord blood-derived natural killer (NK) cells. This combined strategy boosted NK cell effector function through enhancing the Akt/mTORC1 axis and c-MYC signaling, resulting in increased aerobic glycolysis. When tested in a lymphoma mouse model, this combined approach improved NK cell antitumor activity more than either alteration alone, eradicating lymphoma xenografts without signs of any measurable toxicity. We conclude that targeting a cytokine checkpoint further enhances the antitumor activity of IL-15-secreting armored CAR-NK cells by promoting their metabolic fitness and antitumor activity. This combined approach represents a promising milestone in the development of the next generation of NK cells for cancer immunotherapy.


Asunto(s)
Sangre Fetal/citología , Inmunoterapia Adoptiva , Interleucina-15/genética , Células Asesinas Naturales/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Supresoras de la Señalización de Citocinas/antagonistas & inhibidores , Aerobiosis , Animales , Antígenos CD19/inmunología , Linfoma de Burkitt/patología , Linfoma de Burkitt/terapia , Sistemas CRISPR-Cas , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Glucólisis , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/trasplante , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptores Quiméricos de Antígenos , Transducción de Señal/fisiología , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
bioRxiv ; 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32995792

RESUMEN

Adoptive cell therapy with viral-specific T cells has been successfully used to treat life-threatening viral infections, supporting the application of this approach against COVID-19. We expanded SARS-CoV-2 T-cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observed that the choice of cytokines modulates the expansion, phenotype and hierarchy of antigenic recognition by SARS-CoV-2 T-cells. Culture with IL-2/4/7 but not other cytokine-driven conditions resulted in >1000 fold expansion in SARS-CoV-2 T-cells with a retained phenotype, function and hierarchy of antigenic recognition when compared to baseline (pre-expansion) samples. Expanded CTLs were directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T-cells could not be efficiently expanded from the peripheral blood of non-exposed controls. Since corticosteroids are used for the management of severe COVID-19, we developed an efficient strategy to inactivate the glucocorticoid receptor gene ( NR3C1 ) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

11.
Nat Metab ; 2(2): 167-178, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32617517

RESUMEN

The neonatal mammalian heart is capable of regeneration for a brief window of time after birth. However, this regenerative capacity is lost within the first week of life, which coincides with a postnatal shift from anaerobic glycolysis to mitochondrial oxidative phosphorylation, particularly towards fatty-acid utilization. Despite the energy advantage of fatty-acid beta-oxidation, cardiac mitochondria produce elevated rates of reactive oxygen species when utilizing fatty acids, which is thought to play a role in cardiomyocyte cell-cycle arrest through induction of DNA damage and activation of DNA-damage response (DDR) pathway. Here we show that inhibiting fatty-acid utilization promotes cardiomyocyte proliferation in the postnatatal heart. First, neonatal mice fed fatty-acid deficient milk showed prolongation of the postnatal cardiomyocyte proliferative window, however cell cycle arrest eventually ensued. Next, we generated a tamoxifen-inducible cardiomyocyte-specific, pyruvate dehydrogenase kinase 4 (PDK4) knockout mouse model to selectively enhance oxidation of glycolytically derived pyruvate in cardiomyocytes. Conditional PDK4 deletion resulted in an increase in pyruvate dehydrogenase activity and consequently an increase in glucose relative to fatty-acid oxidation. Loss of PDK4 also resulted in decreased cardiomyocyte size, decreased DNA damage and expression of DDR markers and an increase in cardiomyocyte proliferation. Following myocardial infarction, inducible deletion of PDK4 improved left ventricular function and decreased remodelling. Collectively, inhibition of fatty-acid utilization in cardiomyocytes promotes proliferation, and may be a viable target for cardiac regenerative therapies.


Asunto(s)
Ciclo Celular , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/citología , Animales , Daño del ADN , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/metabolismo , Ácidos Grasos/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
Blood Adv ; 4(14): 3357-3367, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32717029

RESUMEN

Virus-specific T cells have proven highly effective for the treatment of severe and drug-refractory infections after hematopoietic stem cell transplant (HSCT). However, the efficacy of these cells is hindered by the use of glucocorticoids, often given to patients for the management of complications such as graft-versus-host disease. To address this limitation, we have developed a novel strategy for the rapid generation of good manufacturing practice (GMP)-grade glucocorticoid-resistant multivirus-specific T cells (VSTs) using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing technology. We have shown that deleting the nuclear receptor subfamily 3 group C member 1 (NR3C1; the gene encoding for the glucocorticoid receptor) renders VSTs resistant to the lymphocytotoxic effect of glucocorticoids. NR3C1-knockout (KO) VSTs kill their targets and proliferate successfully in the presence of high doses of dexamethasone both in vitro and in vivo. Moreover, we developed a protocol for the rapid generation of GMP-grade NR3C1 KO VSTs with high on-target activity and minimal off-target editing. These genetically engineered VSTs promise to be a novel approach for the treatment of patients with life-threatening viral infections post-HSCT on glucocorticoid therapy.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Humanos , Receptores de Glucocorticoides/genética , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...