Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(1): 1463-1474, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36576964

RESUMEN

Ferroelectric field-effect transistors (FeFETs) have attracted enormous attention for low-power and high-density nonvolatile memory devices in processing-in-memory (PIM). However, their small memory window (MW) and limited endurance severely degrade the area efficiency and reliability of PIM devices. Herein, we overcome such challenges using key approaches covering from the material to the device and array architecture. High ferroelectricity was successfully demonstrated considering the thermodynamics and kinetics, even in a relatively thick (≥30 nm) ferroelectric material that was unexplored so far. Moreover, we employed a metal-ferroelectric-metal-insulator-semiconductor architecture that enabled desirable voltage division between the ferroelectric and the metal-oxide-semiconductor FET, leading to a large MW (∼11 V), fast operation speed (<20 ns), and high endurance (∼1011 cycles) characteristics. Subsequently, reliable and energy-efficient multiply-and-accumulation (MAC) operations were verified using a fabricated FeFET-PIM array. Furthermore, a system-level simulation demonstrated the high energy efficiency of the FeFET-PIM array, which was attributed to charge-domain computing. Finally, the proposed signed weight MAC computation achieved high accuracy on the CIFAR-10 dataset using the VGG-8 network.

2.
ACS Appl Mater Interfaces ; 14(47): 53019-53026, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36394287

RESUMEN

The effect of negative capacitance (NC), which can internally boost the voltage applied to a transistor, has been considered to overcome the fundamental Boltzmann limit of a transistor. To stabilize the NC effect, the dielectric (DE) must be integrated into a heterostructure with a ferroelectric (FE) film. However, in a multidomain hafnia, the charge boosting effect is reduced owing to a lowering of the depolarization field originating from the stray field at each domain, and simultaneously, the operating voltage increases owing to the voltage division at the DE. Here, we demonstrate core approaches to the gate stack of energy-efficient device technology using a transient NC. Electrical measurements of the transistor with imprinted antiferroelectric and high CDE/CFE structures exhibit low subthreshold slopes below 20 mV/dec, a low voltage operation of 0.5 V, a fast operation of 20 ns, hysteresis-free Id-Vg, and high endurance characteristics of 1012 cycles. We expect that this will lead to the rapid implementation of the NC effect in high-speed switching device applications with significantly improved energy efficiency.

3.
Nanomaterials (Basel) ; 9(8)2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349615

RESUMEN

As a developing technology for flexible electronic device fabrication, ultra-violet (UV) photodetectors (PDs) based on a ZnO nanostructure are an effective approach for large-area integration of sensors on nonconventional substrates, such as plastic or paper. However, photoconductive ZnO nanorods grown on flexible substrates have slow responses or recovery as well as low spectral responsivity R because of the native defects and inferior crystallinity of hydrothermally grown ZnO nanorods at low temperatures. In this study, ZnO nanorod crystallites are doped with Cu or Ni/Cu when grown on polyethylene terephthalate (PET) substrates in an attempt to improve the performance of flexible PDs. The doping with Ni/Cu or Cu not only improves the crystalline quality but also significantly suppresses the density of deep-level emission defects in as-grown ZnO nanorods, as demonstrated by X-ray diffraction and photoluminescence. Furthermore, the X-ray photoelectron spectroscopy analysis shows that doping with the transition metals significantly increases the oxygen bonding with metal ions with enhanced O/Zn stoichiometry in as-grown nanorods. The fabricated flexible PD devices based on an interdigitated electrode structure demonstrates a very high R of ~123 A/W, a high on-off current ratio of ~130, and a significant improvement in transient response speed exhibiting rise and fall time of ~8 and ~3 s, respectively, by using the ZnO nanorods codoped by Ni/Cu.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...