Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Intervalo de año de publicación
1.
Ecol Evol ; 14(3): e10782, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481760

RESUMEN

In the Anopheles genus, various mosquito species are able to transmit the Plasmodium parasites responsible for malaria, while others are non-vectors. In an effort to better understand the biology of Anopheles species and to quantify transmission risk in an area, the identification of mosquito species collected in the field is an essential but problematic task. Morphological identification requires expertise and cannot be checked after processing samples in a destructive treatment, while sequencing of numerous samples is costly. Here, we introduce a method of Species identification via Simple Observation Coupled with Capillary Electrophoresis Technology (SOCCET). This molecular technique of species identification is based on precise determination of ITS2 length combined with a simple visual observation, the colour of mosquito hindleg tip. DNA extracted from field-collected Anopheles mosquitoes was amplified with universal Anopheles ITS2 primers and analysed with a capillary electrophoresis device, which precisely determines the size of the fragments. We defined windows of amplicon sizes combined with fifth hind tarsus colour, which allows discrimination of the major Anopheles species found in our collections. We validated our parameters via Sanger sequencing of ITS2 amplicons. Using the SOCCET method, we characterised the composition of Anopheles populations in five locations of French Guiana, where we detected a total of nine species. Anopheles braziliensis and Anopheles darlingi were detected in four locations each and represented 13 and 67% of our samples, respectively. The SOCCET method can be particularly useful when working with routine sampling sites with a moderate species diversity, that is, when the number of local species is too high to define species-specific primers but low enough to avoid individual ITS2 sequencing. This tool will be of interest to evaluate local malaria transmission risk and this approach may be further implemented for other mosquito genera.

2.
Viruses ; 15(6)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37376570

RESUMEN

French Guiana (FG), a French overseas territory in South America, is susceptible to tropical diseases, including arboviruses. The tropical climate supports the proliferation and establishment of vectors, making it difficult to control transmission. In the last ten years, FG has experienced large outbreaks of imported arboviruses such as Chikungunya and Zika, as well as endemic arboviruses such as dengue, Yellow fever, and Oropouche virus. Epidemiological surveillance is challenging due to the differing distributions and behaviors of vectors. This article aims to summarize the current knowledge of these arboviruses in FG and discuss the challenges of arbovirus emergence and reemergence. Effective control measures are hampered by the nonspecific clinical presentation of these diseases, as well as the Aedes aegypti mosquito's resistance to insecticides. Despite the high seroprevalence of certain viruses, the possibility of new epidemics cannot be ruled out. Therefore, active epidemiological surveillance is needed to identify potential outbreaks, and an adequate sentinel surveillance system and broad virological diagnostic panel are being developed in FG to improve disease management.


Asunto(s)
Aedes , Infecciones por Arbovirus , Arbovirus , Fiebre Chikungunya , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Infecciones por Arbovirus/diagnóstico , Infecciones por Arbovirus/epidemiología , Guyana Francesa/epidemiología , Estudios Seroepidemiológicos , Fiebre Chikungunya/epidemiología , Infección por el Virus Zika/epidemiología , América del Sur/epidemiología , Dengue/diagnóstico , Dengue/epidemiología
3.
Am J Trop Med Hyg ; 108(2): 424-427, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535248

RESUMEN

Anopheles darlingi is the main vector of malaria in South America. In French Guiana, malaria transmission occurs inland and along the rivers with a regular reemergence in the lower Oyapock area. Control against malaria vectors includes indoor residual spraying of deltamethrin and the distribution of long-lasting impregnated bednets. In this context, the level of resistance to pyrethroids was monitored for 4 years using CDC bottle tests in An. darlingi populations. A loss of susceptibility to pyrethroids was recorded with 30-minute knock-down measured as low as 81%. However, no pyrethroid molecular resistance was found by sequencing a 170 base pair fragment of the S6 segment of domain II of the voltage-gated sodium channel gene. Fluctuation of resistance phenotypes may be influenced by the reintroduction of susceptible alleles from sylvatic populations or by other mechanisms of metabolic resistance.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Anopheles/genética , Guyana Francesa , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Malaria/prevención & control , Piretrinas/farmacología , Insecticidas/farmacología , Control de Mosquitos
4.
Med Vet Entomol ; 36(4): 486-495, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35762523

RESUMEN

The urban mosquito species Aedes aegypti is the main vector of arboviruses worldwide. Mosquito control with insecticides is the most prevalent method for preventing transmission in the absence of effective vaccines and available treatments; however, the extensive use of insecticides has led to the development of resistance in mosquito populations throughout the world, and the number of epidemics caused by arboviruses has increased. Three mosquito lines with different resistance profiles to deltamethrin were isolated in French Guiana, including one with the I1016 knock-down resistant allele. Significant differences were observed in the cumulative proportion of mosquitoes with a disseminated chikungunya virus infection over time across these lines. In addition, some genes related to resistance (CYP6BB2, CYP6N12, GST2, trypsin) were variably overexpressed in the midgut at 7 days after an infectious bloodmeal in these three lines. Our work shows that vector competence for chikungunya virus varied between Ae. aegypti laboratory lines with different deltamethrin resistance profiles. More accurate verification of the functional association between insecticide resistance and vector competence remains to be demonstrated.


Asunto(s)
Aedes , Arbovirus , Virus Chikungunya , Insecticidas , Animales , Insecticidas/farmacología , Mosquitos Vectores , Resistencia a los Insecticidas/genética
5.
Front Microbiol ; 12: 645701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305822

RESUMEN

Serratia marcescens is a bacterial species widely found in the environment, which very efficiently colonizes mosquitoes. In this study, we isolated a red-pigmented S. marcescens strain from our mosquito colony (called S. marcescens VA). This red pigmentation is caused by the production of prodigiosin, a molecule with antibacterial properties. To investigate the role of prodigiosin on mosquito-S. marcescens interactions, we produced two white mutants of S. marcescens VA by random mutagenesis. Whole genome sequencing and chemical analyses suggest that one mutant has a nonsense mutation in the gene encoding prodigiosin synthase, while the other one is deficient in the production of several types of secondary metabolites including prodigiosin and serratamolide. We used our mutants to investigate how S. marcescens secondary metabolites affect the mosquito and its microbiota. Our in vitro tests indicated that S. marcescens VA inhibits the growth of several mosquito microbiota isolates using a combination of prodigiosin and other secondary metabolites, corroborating published data. This strain requires secondary metabolites other than prodigiosin for its proteolytic and hemolytic activities. In the mosquito, we observed that S. marcescens VA is highly virulent to larvae in a prodigiosin-dependent manner, while its virulence on adults is lower and largely depends on other metabolites.

6.
Curr Trop Med Rep ; 8(3): 164-172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178576

RESUMEN

PURPOSE OF REVIEW: Although the chikungunya virus was discovered more than 60 years ago, it has only really been studied since the outbreak in La Reunion in 2005-2006. Ten years later, between 2014 and 2015, the chikungunya virus spread throughout the Americas, affecting millions of people. The objective of this review is to describe the contributions of research on chikungunya virus infection gained from epidemic in the West Indies and the Guiana Shield. RECENT FINDINGS: Prevalence data were similar to those found in the Indian Ocean or Asia during epidemics. Clinically, there is now a better understanding of the typical, atypical, and severe forms. Several studies have insisted on the presence of neurological forms of chikungunya infection, such as encephalitis or Guillain-Barré syndrome. Cases of septic shock due to chikungunya virus as well as thrombotic thrombocytopenic purpura were described for the first time. Given the magnitude of the epidemic and the large number of people affected, this has led to a better description and new classifications of chikungunya virus infections in specific populations such as pregnant women, the elderly, and children. Several studies also described the behavior of populations faced with an emerging disease. SUMMARY: Current epidemiological data from tropical regions highlights the risk of spreading emerging diseases at higher latitudes, especially concerning arboviruses, since the vector Aedes albopictus is already established in many parts of northern countries. A better understanding of the disease and its epidemic dynamics will foster better management, the crucial importance of which was demonstrated during the COVID-19 epidemic.

7.
Infect Genet Evol ; 93: 104916, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34004361

RESUMEN

French Guiana is a European ultraperipheric region located on the northern Atlantic coast of South America. It constitutes an important forested region for biological conservation in the Neotropics. Although very sparsely populated, with its inhabitants mainly concentrated on the Atlantic coastal strip and along the two main rivers, it is marked by the presence and development of old and new epidemic disease outbreaks, both research and health priorities. In this review paper, we synthetize 15 years of multidisciplinary and integrative research at the interface between wildlife, ecosystem modification, human activities and sociodemographic development, and human health. This study reveals a complex epidemiological landscape marked by important transitional changes, facilitated by increased interconnections between wildlife, land-use change and human occupation and activity, human and trade transportation, demography with substantial immigration, and identified vector and parasite pharmacological resistance. Among other French Guianese characteristics, we demonstrate herein the existence of more complex multi-host disease life cycles than previously described for several disease systems in Central and South America, which clearly indicates that today the greater promiscuity between wildlife and humans due to demographic and economic pressures may offer novel settings for microbes and their hosts to circulate and spread. French Guiana is a microcosm that crystallizes all the current global environmental, demographic and socioeconomic change conditions, which may favor the development of ancient and future infectious diseases.


Asunto(s)
Animales Salvajes , Demografía , Ecosistema , Enfermedades Transmitidas por Vectores , Zoonosis , Animales , Guyana Francesa/epidemiología , Actividades Humanas , Humanos , Incidencia , Investigación Interdisciplinaria , Prevalencia , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/transmisión , Zoonosis/epidemiología , Zoonosis/etiología , Zoonosis/transmisión
8.
Mem Inst Oswaldo Cruz ; 115: e200313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33533870

RESUMEN

BACKGROUND: Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES: Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS: In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS: Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION: The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.


Asunto(s)
Aedes/efectos de los fármacos , Insectos Vectores/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Piretrinas/farmacología , Aedes/genética , Aedes/virología , Animales , Guyana Francesa , Insectos Vectores/efectos de los fármacos , Control de Mosquitos/métodos , Mosquitos Vectores/virología , Análisis Espacio-Temporal
9.
PLoS One ; 16(1): e0243992, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33428654

RESUMEN

Insecticide resistance is a worldwide threat for vector control around the world, and Aedes aegypti, the main vector of several arboviruses, is a particular concern. To better understand the mechanisms of resistance, four isofemale strains originally from French Guiana were isolated and analysed using combined approaches. The activity of detoxification enzymes involved in insecticide resistance was assayed, and mutations located at positions 1016 and 1534 of the sodium voltage-gated channel gene, which have been associated with pyrethroid resistance in Aedes aegypti populations in Latin America, were monitored. Resistance to other insecticide families (organophosphates and carbamates) was evaluated. A large-scale proteomic analysis was performed to identify proteins involved in insecticide resistance. Our results revealed a metabolic resistance and resistance associated with a mutation of the sodium voltage-gated channel gene at position 1016. Metabolic resistance was mediated through an increase of esterase activity in most strains but also through the shifts in the abundance of several cytochrome P450 (CYP450s). Overall, resistance to deltamethrin was linked in the isofemale strains to resistance to other class of insecticides, suggesting that cross- and multiple resistance occur through selection of mechanisms of metabolic resistance. These results give some insights into resistance to deltamethrin and into multiple resistance phenomena in populations of Ae. aegypti.


Asunto(s)
Aedes/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Canales de Sodio Activados por Voltaje/genética , Aedes/efectos de los fármacos , Aedes/genética , Animales , Esterasas/metabolismo , Femenino , Guyana Francesa , Técnicas de Silenciamiento del Gen , Genotipo , Inactivación Metabólica/genética , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Mucosa Intestinal/metabolismo , Nitrilos/farmacología , Oligonucleótidos/metabolismo , Polimorfismo de Nucleótido Simple , Proteoma/análisis , Proteómica , Piretrinas/farmacología , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
10.
BMC Infect Dis ; 20(1): 373, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32456698

RESUMEN

BACKGROUND: In 2017, inhabitants along the border between French Guiana and Brazil were affected by a malaria outbreak primarily due to Plasmodium vivax (Pv). While malaria cases have steadily declined between 2005 and 2016 in this Amazonian region, a resurgence was observed in 2017. METHODS: Two investigations were performed according to different spatial scales and information details: (1) a local study on the French Guiana border, which enabled a thorough investigation of malaria cases treated at a local village health center and the entomological circumstances in the most affected neighborhood, and (2) a regional and cross-border study, which enabled exploration of the regional spatiotemporal epidemic dynamic. Number and location of malaria cases were estimated using French and Brazilian surveillance systems. RESULTS: On the French Guianese side of the border in Saint-Georges de l'Oyapock, the attack rate was 5.5% (n = 4000), reaching 51.4% (n = 175) in one Indigenous neighborhood. Entomological findings suggest a peak of Anopheles darlingi density in August and September. Two female An. darlingi (n = 1104, 0.18%) were found to be Pv-positive during this peak. During the same period, aggregated data from passive surveillance conducted by Brazilian and French Guianese border health centers identified 1566 cases of Pv infection. Temporal distribution during the 2007-2018 period displayed seasonal patterns with a peak in November 2017. Four clusters were identified among epidemic profiles of cross-border area localities. All localities of the first two clusters were Brazilian. The localization of the first cluster suggests an onset of the outbreak in an Indigenous reservation, subsequently expanding to French Indigenous neighborhoods and non-Native communities. CONCLUSIONS: The current findings demonstrate a potential increase in malaria cases in an area with otherwise declining numbers. This is a transborder region where human mobility and remote populations challenge malaria control programs. This investigation illustrates the importance of international border surveillance and collaboration for malaria control, particularly in Indigenous villages and mobile populations.


Asunto(s)
Anopheles , Malaria/epidemiología , Adolescente , Animales , Brasil/epidemiología , Brotes de Enfermedades , Femenino , Guyana Francesa/epidemiología , Humanos , Incidencia , Malaria Vivax/epidemiología , Masculino , Mosquitos Vectores , Plasmodium vivax , Características de la Residencia , Estaciones del Año , Análisis Espacio-Temporal , Adulto Joven
11.
Mem. Inst. Oswaldo Cruz ; 115: e200313, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1154867

RESUMEN

BACKGROUND Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.


Asunto(s)
Animales , Piretrinas/farmacología , Resistencia a los Insecticidas/efectos de los fármacos , Resistencia a los Insecticidas/genética , Aedes/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Insecticidas/farmacología , Control de Mosquitos/métodos , Aedes/genética , Análisis Espacio-Temporal , Mosquitos Vectores/virología , Guyana Francesa , Insectos Vectores/efectos de los fármacos , Insectos Vectores/genética
12.
Mem Inst Oswaldo Cruz ; 113(5): e170398, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29538490

RESUMEN

Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.


Asunto(s)
Culicidae , Insecticidas , Control de Mosquitos/métodos , Mosquitos Vectores , Animales , Fiebre Chikungunya/transmisión , Culicidae/clasificación , Dengue/transmisión , Guyana Francesa , Educación en Salud , Humanos , Malaria/transmisión , Mosquitos Vectores/clasificación , Fiebre Amarilla/transmisión , Infección por el Virus Zika/transmisión
13.
Mem. Inst. Oswaldo Cruz ; 113(5): e170398, 2018. graf
Artículo en Inglés | LILACS | ID: biblio-894919

RESUMEN

Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.


Asunto(s)
Humanos , Fiebre Chikungunya/transmisión , Infección por el Virus Zika/terapia , Mosquitos Vectores/clasificación
14.
PLoS Negl Trop Dis ; 11(11): e0005933, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29145400

RESUMEN

Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) that recently caused outbreaks in the Americas. Over the past 60 years, this virus has been observed circulating among African, Asian, and Pacific Island populations, but little attention has been paid by the scientific community until the discovery that large-scale urban ZIKV outbreaks were associated with neurological complications such as microcephaly and several other neurological malformations in fetuses and newborns. This paper is a systematic review intended to list all mosquito species studied for ZIKV infection or for their vector competence. We discuss whether studies on ZIKV vectors have brought enough evidence to formally exclude other mosquitoes than Aedes species (and particularly Aedes aegypti) to be ZIKV vectors. From 1952 to August 15, 2017, ZIKV has been studied in 53 mosquito species, including 6 Anopheles, 26 Aedes, 11 Culex, 2 Lutzia, 3 Coquillettidia, 2 Mansonia, 2 Eretmapodites, and 1 Uranotaenia. Among those, ZIKV was isolated from 16 different Aedes species. The only species other than Aedes genus for which ZIKV was isolated were Anopheles coustani, Anopheles gambiae, Culex perfuscus, and Mansonia uniformis. Vector competence assays were performed on 22 different mosquito species, including 13 Aedes, 7 Culex, and 2 Anopheles species with, as a result, the discovery that A. aegypti and Aedes albopictus were competent for ZIKV, as well as some other Aedes species, and that there was a controversy surrounding Culex quinquefasciatus competence. Although Culex, Anopheles, and most of Aedes species were generally observed to be refractory to ZIKV infection, other potential vectors transmitting ZIKV should be explored.


Asunto(s)
Aedes/virología , Anopheles/virología , Culex/virología , Mosquitos Vectores/virología , Virus Zika/aislamiento & purificación , Aedes/fisiología , Américas/epidemiología , Animales , Anopheles/fisiología , Culex/fisiología , Brotes de Enfermedades , Humanos , Microcefalia/epidemiología , Microcefalia/virología , Mosquitos Vectores/clasificación , Mosquitos Vectores/fisiología , Saliva/virología , Virus Zika/fisiología , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología
15.
PLoS One ; 11(5): e0155435, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27231950

RESUMEN

Oysters play an important role in estuarine and coastal marine habitats, where the majority of humans live. In these ecosystems, environmental degradation is substantial, and oysters must cope with highly dynamic and stressful environmental constraints during their lives in the intertidal zone. The availability of the genome sequence of the Pacific oyster Crassostrea gigas represents a unique opportunity for a comprehensive assessment of the signal transduction pathways that the species has developed to deal with this unique habitat. We performed an in silico analysis to identify, annotate and classify protein kinases in C. gigas, according to their kinase domain taxonomy classification, and compared with kinome already described in other animal species. The C. gigas kinome consists of 371 protein kinases, making it closely related to the sea urchin kinome, which has 353 protein kinases. The absence of gene redundancy in some groups of the C. gigas kinome may simplify functional studies of protein kinases. Through data mining of transcriptomes in C. gigas, we identified part of the kinome which may be central during development and may play a role in response to various environmental factors. Overall, this work contributes to a better understanding of key sensing pathways that may be central for adaptation to a highly dynamic marine environment.


Asunto(s)
Crassostrea/enzimología , Crassostrea/genética , Ambiente , Regulación del Desarrollo de la Expresión Génica , Genómica , Proteínas Quinasas/genética , Animales , Crassostrea/crecimiento & desarrollo , Activación Enzimática , Filogenia , Proteínas Quinasas/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(9): 2430-5, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26831072

RESUMEN

Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0.023 mg·L(-1)) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-µm micro-PS over the 2-µm-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (-38%), diameter (-5%), and sperm velocity (-23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.


Asunto(s)
Ostreidae/fisiología , Plásticos/farmacología , Poliestirenos/farmacología , Reproducción/efectos de los fármacos , Animales , Ostreidae/genética , Ostreidae/metabolismo , Proteoma , Transcriptoma
17.
Chem Res Toxicol ; 28(9): 1831-41, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26313537

RESUMEN

Here, we assess the physiological effects induced by environmental concentrations of pesticides in Pacific oyster Crassostrea gigas. Oysters were exposed for 14 d to trace levels of metconazole (0.2 and 2 µg/L), isoproturon (0.1 and 1 µg/L), or both in a mixture (0.2 and 0.1 µg/L, respectively). Exposure to trace levels of pesticides had no effect on the filtration rate, growth, and energy reserves of oysters. However, oysters exposed to metconazole and isoproturon showed an overactivation of the sensing-kinase AMP-activated protein kinase α (AMPKα), a key enzyme involved in energy metabolism and more particularly glycolysis. In the meantime, these exposed oysters showed a decrease in hexokinase and pyruvate kinase activities, whereas 2-DE proteomic revealed that fructose-1,6-bisphosphatase (F-1,6-BP), a key enzyme of gluconeogenesis, was up-regulated. Activities of antioxidant enzymes were higher in oysters exposed to the highest pesticide concentrations. Both pesticides enhanced the superoxide dismutase activity of oysters. Isoproturon enhanced catalase activity, and metconazole enhanced peroxiredoxin activity. Overall, our results show that environmental concentrations of metconazole or isoproturon induced subtle changes in the energy and antioxidant metabolisms of oysters.


Asunto(s)
Antioxidantes/metabolismo , Metabolismo Energético/efectos de los fármacos , Ostreidae/efectos de los fármacos , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Adenilato Quinasa/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Ostreidae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...