Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(32): 22593-22605, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37501772

RESUMEN

The microbiological safety of medical equipment and general surfaces is paramount to both the well-being of patients and the public. The application of ozone (a potent oxidant) has been recognised and implemented for this purpose, globally. However, it has primarily been utilised in the gaseous and aqueous forms. In this study, we investigate the potency of fine ozone mists and evaluate the synergistic effect when combined with cationic, anionic and non-ionic surfactants (dodecyl trimethyl ammonium bromide - DTAB, sodium dodecyl sulfate - SDS, alkyl polyglycoside - APG) as well as polyethylene glycol (PEG). Ozone mist is generated via a nebuliser (equipped with a compressed gas stream) and the piezoelectric method; whereas fabric substrates contaminated with Escherichia coli and Staphylococcus aureus are utilised in this study. Contamination levels on the fabric swatches are evaluated using agar dipslides. Compared to gaseous ozonation and aqueous ozonation (via nanobubble generation), the produced ozone mists showed significantly inferior antimicrobial properties for the tested conditions (6 ppm, 5-15 min). However, the hybrid mist-based application of 'ozone + surfactants' and 'ozone + PEG' showed considerable improvements compared to their independent applications (ozone mist only and surfactant mist only). The 'ozone + DTAB' mist had the highest activity, with better results observed with the micron-mist nebuliser than the piezoelectric transducer. We propose a likely mechanism for this synergistic performance (micellar encapsulation) and demonstrate the necessity for continued developments of novel decontamination technologies.

2.
iScience ; 26(6): 106944, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37332608

RESUMEN

The aviation sector, a significant greenhouse gas emitter, must lower its emissions to alleviate the climate change impact. Decarbonization can be achieved by converting low-carbon feedstock to sustainable aviation fuel (SAF). This study reviews SAF production pathways like hydroprocessed esters and fatty acids (HEFA), gasification and Fischer-Tropsch Process (GFT), Alcohol to Jet (ATJ), direct sugar to hydrocarbon (DSHC), and fast pyrolysis (FP). Each pathway's advantages, limitations, cost-effectiveness, and environmental impact are detailed, with reaction pathways, feedstock, and catalyst requirements. A multi-criteria decision framework (MCDS) was used to rank the most promising SAF production pathways. The results show the performance ranking order as HEFA > DSHC > FP > ATJ > GFT, assuming equal weight for all criteria.

3.
Ind Eng Chem Res ; 62(10): 4191-4209, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36943762

RESUMEN

The control of infectious diseases can be improved via carefully designed decontamination equipment and systems. Research interest in ozone (a powerful antimicrobial agent) has significantly increased over the past decade. The COVID-19 pandemic has also instigated the development of new ozone-based technologies for the decontamination of personal protective equipment, surfaces, materials, and indoor environments. As this interest continues to grow, it is necessary to consider key factors affecting the applicability of lab-based findings to large-scale systems utilizing ozone. In this review, we present recent developments on the critical factors affecting the successful deployments of industrial ozone technologies. Some of these include the medium of application (air or water), material compatibility, efficient circulation and extraction, measurement and control, automation, scalability, and process economics. We also provide a comparative assessment of ozone relative to other decontamination methods/sterilization technologies and further substantiate the necessity for increased developments in gaseous and aqueous ozonation. Modeling methodologies, which can be applied for the design and implementation of ozone contacting systems, are also presented in this review. Key knowledge gaps and open research problems/opportunities are extensively covered including our recommendations for the development of novel solutions with industrial importance.

4.
Chem Eng J ; 454: 140188, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36373160

RESUMEN

Ozone - a powerful antimicrobial agent, has been extensively applied for decontamination purposes in several industries (including food, water treatment, pharmaceuticals, textiles, healthcare, and the medical sectors). The advent of the COVID-19 pandemic has led to recent developments in the deployment of different ozone-based technologies for the decontamination of surfaces, materials and indoor environments. The pandemic has also highlighted the therapeutic potential of ozone for the treatment of COVID-19 patients, with astonishing results observed. The key objective of this review is to summarize recent advances in the utilisation of ozone for decontamination applications in the above-listed industries while emphasising the impact of key parameters affecting microbial reduction efficiency and ozone stability for prolonged action. We realise that aqueous ozonation has received higher research attention, compared to the gaseous application of ozone. This can be attributed to the fact that water treatment represents one of its earliest applications. Furthermore, the application of gaseous ozone for personal protective equipment (PPE) and medical device disinfection has not received a significant number of contributions compared to other applications. This presents a challenge for which the correct application of ozonation can mitigate. In this review, a critical discussion of these challenges is presented, as well as key knowledge gaps and open research problems/opportunities.

5.
ACS Omega ; 7(47): 43006-43021, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36467929

RESUMEN

With the advent of the COVID-19 pandemic, there has been a global incentive for applying environmentally sustainable and rapid sterilization methods, such as ultraviolet-C radiation (UVC) and ozonation. Material sterilization is a requirement for a variety of industries, including food, water treatment, clothing, healthcare, medical equipment, and pharmaceuticals. It becomes inevitable when devices and items like protective equipment are to be reused on/by different persons. This study presents novel findings on the performance of these sterilization methods using four microorganisms (Escherichia coli , Staphylococcus aureus , Candida albicans , and Aspergillus fumigatus) and six material substrates (stainless steel, polymethyl methacrylate, copper, surgical facemask, denim, and a cotton-polyester fabric). The combination of both ozone and UVC generally yields improved performance compared to their respective applications for the range of materials and microorganisms considered. Furthermore, the effectiveness of both UVC and ozone was higher when the fungi utilized were smeared onto the nonabsorbent materials than when 10 µL droplets were placed on the material surfaces. This dependence on the contaminating liquid surface area was not exhibited by the bacteria. This study highlights the necessity of adequate UVC and ozone dosage control as well as their synergistic and multifunctional attributes when sterilizing different materials contaminated with a wide range of microorganisms.

6.
Ind Eng Chem Res ; 61(27): 9600-9610, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35855724

RESUMEN

For decades, ozone has been known to have antimicrobial properties when dissolved or generated in water and when utilized in its gaseous form on different substrates. This property (the ability to be used in air and water) makes it versatile and applicable to different industries. Although the medium of ozonation depends on the specific process requirements, some industries have the inherent flexibility of medium selection. Thus, it is important to evaluate the antimicrobial efficacy in both media at similar concentrations, an endeavor hardly reported in the literature. This study provides insights into ozone's efficacy in air and water using two Gram-negative bacteria (Escherichia coli NTCC1290 and Pseudomonas aeruginosa NCTC10332), two Gram-positive bacteria (Staphylococcus aureus ATCC25923 and Streptococcus mutans), and two fungi (Candida albicans and Aspergillus fumigatus). For gaseous ozonation, we utilized a custom-made ozone chamber (equipped with ultraviolet lamps), whereas an electrolysis oxygen radical generator was applied for ozone generation in water. During gaseous ozonation, the contaminated substrates (fabric swatches inoculated with bacterial and fungal suspensions) were suspended in the chamber, whereas the swatches were immersed in ozonated water for aqueous ozone treatment. The stability of ozone nanobubbles and their resulting impact on the aqueous disinfection efficiency were studied via dynamic light scattering measurements. It was observed that ozone is more effective in air than in water on all tested organisms except Staphylococcus aureus. The presented findings allow for the adjustment of the treatment conditions (exposure time and concentration) for optimal decontamination, particularly when a certain medium is preferred for ozonation.

7.
J Microbiol Methods ; 194: 106431, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35131364

RESUMEN

Ozone treatment is an eco-friendly and cost-effective approach to achieve material disinfection, and this disinfection method is of utmost importance in the present global pandemic. The efficacy of ozone's oxidative potential on common microorganisms has been extensively studied, particularly in the food and water treatment industries. However, little is still understood regarding its antimicrobial capabilities for the treatment of textile substrates in air. In this study, fabric swatches inoculated with bacterial and fungal suspensions are exposed to ozone for different durations and at different ozone concentrations. Pathogenic bacteria (Escherichia coli, Staphylococcus aureus), and fungi (Aspergillus fumigatus, and Candida albicans), are the microbes utilised in this study. The efficacy of ozone is demonstrated by the complete removal of microbiota on the tested swatches when a concentration and exposure duration of 20 ppm and 4 mins are respectively maintained in a test ozone chamber. We expect the insights from this work to guide the development of new ozonation techniques capable of rapid sterilisation in industrial & public settings.


Asunto(s)
Ozono , Purificación del Agua , Bacterias , Desinfección/métodos , Escherichia coli , Ozono/farmacología
8.
Cell Mol Bioeng ; 14(6): 535-553, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34249167

RESUMEN

The novel coronavirus disease (COVID-19) pandemic outbreak is the most startling public health crises with attendant global socio-economic burden ever experienced in the twenty-first century. The level of devastation by this outbreak is such that highly impacted countries will take years to recover. Studies have shown that timely detection based on accelerated sample testing and accurate diagnosis are crucial steps to reducing or preventing the spread of any pandemic outbreak. In this opinionated review, the impacts of metal organic frameworks (MOFs) as a biosensor in a pandemic outbreak is investigated with reference to COVID-19. Biosensing technologies have been proven to be very effective in clinical analyses, especially in assessment of severe infectious diseases. Polymerase chain reactions (PCR, RT-PCR, CRISPR) - based test methods predominantly used for SARS-COV-2 diagnoses have serious limitations and the health scientists and researchers are urged to come up with a more robust and versatile system for solving diagnostic problem associated with the current and future pandemic outbreaks. MOFs, an emerging crystalline material with unique characteristics will serve as promising biosensing materials in a pandemic outbreak such as the one we are in. We hereby highlight the characteristics of MOFs and their sensing applications, potentials as biosensors in a pandemic outbreak and draw the attention of researchers to a new vista of research that needs immediate action.

9.
J Glob Health ; 11: 10002, 2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33828849

RESUMEN

BACKGROUND: This rapid evidence review identifies and integrates evidence from epidemiology, microbiology and fluid dynamics on the transmission of SARS-CoV-2 in indoor environments. METHODS: Searches were conducted in May 2020 in PubMed, medRxiv, arXiv, Scopus, WHO COVID-19 database, Compendex & Inspec. We included studies reporting data on any indoor setting except schools, any indoor activities and any potential means of transmission. Articles were screened by a single reviewer, with rejections assessed by a second reviewer. We used Joanna Briggs Institute and Critical Appraisal Skills Programme tools for evaluating epidemiological studies and developed bespoke tools for the evaluation of study types not covered by these instruments. Data extraction and quality assessment were conducted by a single reviewer. We conducted a meta-analysis of secondary attack rates in household transmission. Otherwise, data were synthesised narratively. RESULTS: We identified 1573 unique articles. After screening and quality assessment, fifty-eight articles were retained for analysis. Experimental evidence from fluid mechanics and microbiological studies demonstrates that aerosolised transmission is theoretically possible; however, we found no conclusive epidemiological evidence of this occurring. The evidence suggests that ventilation systems have the potential to decrease virus transmission near the source through dilution but to increase transmission further away from the source through dispersal. We found no evidence for faecal-oral transmission. Laboratory studies suggest that the virus survives for longer on smooth surfaces and at lower temperatures. Environmental sampling studies have recovered small amounts of viral RNA from a wide range of frequently touched objects and surfaces; however, epidemiological studies are inconclusive on the extent of fomite transmission. We found many examples of transmission in settings characterised by close and prolonged indoor contact. We estimate a pooled secondary attack rate within households of 11% (95% confidence interval (CI) = 9, 13). There were insufficient data to evaluate the transmission risks associated with specific activities. Workplace challenges related to poverty warrant further investigation as potential risk factors for workplace transmission. Fluid mechanics evidence on the physical properties of droplets generated by coughing, speaking and breathing reinforce the importance of maintaining 2 m social distance to reduce droplet transmission. CONCLUSIONS: This review provides a snap-shot of evidence on the transmission of SARS-CoV-2 in indoor environments from the early months of the pandemic. The overall quality of the evidence was low. As the quality and quantity of available evidence grows, it will be possible to reach firmer conclusions on the risk factors for and mechanisms of indoor transmission.


Asunto(s)
Contaminación del Aire Interior/análisis , COVID-19/transmisión , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Ambiente Controlado , Monitoreo del Ambiente/estadística & datos numéricos , Contaminación del Aire Interior/prevención & control , COVID-19/prevención & control , Transmisión de Enfermedad Infecciosa/prevención & control , Microbiología Ambiental , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...