Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Pharmacol ; 15: 1414406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070798

RESUMEN

COVID-19 causes more severe and frequently fatal disease in patients with pre-existing comorbidities such as hypertension and heart disease. SARS-CoV-2 virus enters host cells through the angiotensin-converting enzyme 2 (ACE2), which is fundamental in maintaining arterial pressure through the renin-angiotensin system (RAS). Hypertensive patients commonly use medications such as angiotensin-converting enzyme inhibitors (ACEi), which can modulate the expression of ACE2 and, therefore, potentially impact the susceptibility and severity of SARS-CoV-2 infection. Here we assessed whether treatment of ACE2-humanized (K18-hACE2) mice with the ACEi Lisinopril affects lung ACE2 levels and the outcome of experimental COVID-19. K18-hACE2 mice were treated for 21 days with Lisinopril 10 mg/kg and were then infected with 105 PFU of SARS-CoV-2 (Wuhan strain). Body weight, clinical score, respiratory function, survival, lung ACE2 levels, viral load, lung histology, and cytokine (IL-6, IL-33, and TNF-α) levels were assessed. Mice treated with Lisinopril for 21 days showed increased levels of ACE2 in the lungs. Infection with SARS-CoV-2 led to massive decrease in lung ACE2 levels at 3 days post-infection (dpi) in treated and untreated animals, but Lisinopril-treated mice showed a fast recovery (5dpi) of ACE2 levels. Higher ACE2 levels in Lisinopril-treated mice led to remarkably higher lung viral loads at 3 and 6/7dpi. Lisinopril-treated mice showed decreased levels of the pro-inflammatory cytokines IL-6 and TNF-α in the serum and lungs at 6/7dpi. Marginal improvements in body weight, clinical score and survival were observed in Lisinopril-treated mice. No differences between treated and untreated infected mice were observed in respiratory function and lung histology. Lisinopril treatment showed both deleterious (higher viral loads) and beneficial (anti-inflammatory and probably anti-constrictory and anti-coagulant) effects in experimental COVID-19. These effects seem to compensate each other, resulting in marginal beneficial effects in terms of outcome for Lisinopril-treated animals.

2.
Front Immunol ; 14: 1130662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122742

RESUMEN

Introduction: Macrophages are central cells in mediating the inflammatory response. Objective and Methods: We evaluated the effect of high glucose conditions on the inflammatory profile and the autophagy pathway in Bone-Marrow Derived Macrophages (BMDM) from diabetic (D-BMDM) (alloxan: 60mg/kg, i.v.) and non-diabetic (ND-BMDM) C57BL/6 mice. BMDM were cultured in medium with normal glucose (5.5 mM), or high glucose (25 mM) concentration and were primed with Nigericin (20µM) stimulated with LPS (100 ng/mL) at times of 30 minutes; 2; 4; 6 and 24 hours, with the measurement of IL-6, IL-1ß and TNF-α cytokines. Results: We have further identified changes in the secretion of pro-inflammatory cytokines IL-6, IL-1ß and TNF-α, where BMDM showed increased secretion of these cytokines after LPS + Nigericin stimulation. In addition, changes were observed in the autophagy pathway, where the increase in the autophagic protein LC3b and Beclin-1 occurred by macrophages of non-diabetic animals in hyperglycemic medium, without LPS stimulation. D-BMDM showed a reduction on the expression of LC3b and Beclin-1, suggesting an impaired autophagic process in these cells. Conclusion: The results suggest that hyperglycemia alters the inflammatory pathways in macrophages stimulated by LPS, playing an important role in the inflammatory response of diabetic individuals.


Asunto(s)
Interleucina-6 , Factor de Necrosis Tumoral alfa , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Beclina-1/metabolismo , Nigericina/farmacología , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Citocinas/metabolismo , Autofagia , Glucosa/metabolismo
3.
Viruses ; 15(4)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112979

RESUMEN

Since December 2019, the world has been experiencing the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we now face the emergence of several variants. We aimed to assess the differences between the wild-type (Wt) (Wuhan) strain and the P.1 (Gamma) and Delta variants using infected K18-hACE2 mice. The clinical manifestations, behavior, virus load, pulmonary capacity, and histopathological alterations were analyzed. The P.1-infected mice showed weight loss and more severe clinical manifestations of COVID-19 than the Wt and Delta-infected mice. The respiratory capacity was reduced in the P.1-infected mice compared to the other groups. Pulmonary histological findings demonstrated that a more aggressive disease was generated by the P.1 and Delta variants compared to the Wt strain of the virus. The quantification of the SARS-CoV-2 viral copies varied greatly among the infected mice although it was higher in P.1-infected mice on the day of death. Our data revealed that K18-hACE2 mice infected with the P.1 variant develop a more severe infectious disease than those infected with the other variants, despite the significant heterogeneity among the mice.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Ratones Transgénicos , Pandemias , SARS-CoV-2/genética , Virulencia
4.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36992253

RESUMEN

Acinetobacter baumannii is a Gram-negative, immobile, aerobic nosocomial opportunistic coccobacillus that causes pneumonia, septicemia, and urinary tract infections in immunosuppressed patients. There are no commercially available alternative antimicrobials, and multi-drug resistance is an urgent concern that requires emergency measures and new therapeutic strategies. This study evaluated a multi-drug-resistant A. baumannii whole-cell vaccine, inactivated and adsorbed on an aluminum hydroxide-chitosan (mAhC) matrix, in an A. baumannii sepsis model in immunosuppressed mice by cyclophosphamide (CY). CY-treated mice were divided into immunized, non-immunized, and adjuvant-inoculated groups. Three vaccine doses were given at 0D, 14D, and 28D, followed by a lethal dose of 4.0 × 108 CFU/mL of A. baumannii. Immunized CY-treated mice underwent a significant humoral response, with the highest IgG levels and a higher survival rate (85%); this differed from the non-immunized CY-treated mice, none of whom survived (p < 0.001), and from the adjuvant group, with 45% survival (p < 0.05). Histological data revealed the evident expansion of white spleen pulp from immunized CY-treated mice, whereas, in non-immunized and adjuvanted CY-treated mice, there was more significant organ tissue damage. Our results confirmed the proof-of-concept of the immune response and vaccine protection in a sepsis model in CY-treated mice, contributing to the advancement of new alternatives for protection against A. baumannii infections.

5.
Lancet Reg Health Am ; 18: 100407, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36844021

RESUMEN

Background: Each year, 92 million pregnant women are at risk of contracting malaria during pregnancy, with the underestimation of the mortality and morbidity burden associated with Plasmodium vivax. During pregnancy, P. vivax infection is associated with low birth weight, maternal anaemia, premature delivery, and stillbirth. In the State of Acre (Brazil), high transmission leaves pregnant women at greater risk of contracting malaria and having a greater number of recurrences. The study of genetic diversity and the association of haplotypes with adverse pregnancy effects is of great importance for the control of the disease. Here we investigate the genetic diversity of P. vivax parasites infecting pregnant women across their pregnancies. Methods: P. vivax DNA was extracted from 330 samples from 177 women followed during pregnancy, collected in the State of Acre, Brazil. All samples were negative for Plasmodium falciparum DNA. Sequence data for the Pvmsp1 gene was analysed alongside data from six microsatellite (MS) markers. Allelic frequencies, haplotype frequencies, expected heterozygosity (HE) were calculated. Whole genome sequencing (WGS) was conducted on four samples from pregnant women and phylogenetic analysis performed with other samples from South American regions. Findings: Initially, the pregnant women were stratified into two groups-1 recurrence and 2 or more recurrences-in which no differences were observed in clinical gestational outcomes or in placental histological changes between the two groups. Then we evaluated the parasites genetically. An average of 18.5 distinct alleles were found at each of the MS loci, and the HE calculated for each marker indicates a high genetic diversity occurring within the population. There was a high percentage of polyclonal infections (61.7%, 108/175), and one haplotype (H1) occurred frequently (20%), with only 9 of the haplotypes appearing in more than one patient. Interpretation: Most pregnant women had polyclonal infections that could be the result of relapses and/or re-infections. The high percentage of H1 parasites, along with the low frequency of many other haplotypes are suggestive of a clonal expansion. Phylogenetic analysis shows that P. vivax population within pregnant women clustered with other Brazilian samples in the region. Funding: FAPESP and CNPq - Brazil.

6.
Artículo en Inglés | MEDLINE | ID: mdl-33649109

RESUMEN

Cerebral malaria (CM) is a severe immunovasculopathy which presents high mortality rate (15-20%), despite the availability of artemisinin-based therapy. More effective immunomodulatory and/or antiparasitic therapies are urgently needed. Experimental Cerebral Malaria (ECM) in mice is used to elucidate aspects involved in this pathology since manifests many of the neurological features of CM. In the present study, we evaluated the potential mechanisms involved in the protection afforded by perillyl alcohol (POH) in mouse strains susceptible to CM caused by Plasmodium berghei ANKA (PbA) infection through intranasal preventive treatment. Additionally, to evaluate the interaction of POH with the cerebral endothelium using an in vitro model of human brain endothelial cells (HBEC). Pharmacokinetic approaches demonstrated constant and prolonged levels of POH in the plasma and brain after a single intranasal dose. Treatment with POH effectively prevented vascular dysfunction. Furthermore, treatment with POH reduced the endothelial cell permeability and PbA s in the brain and spleen. Finally, POH treatment decreased the accumulation of macrophages and T and B cells in the spleen and downregulated the expression of endothelial adhesion molecules (ICAM-1, VCAM-1, and CD36) in the brain. POH is a potent monoterpene that prevents cerebrovascular dysfunction in vivo and in vitro, decreases parasite sequestration, and modulates different processes related to the activation, permeability, and integrity of the blood brain barrier (BBB), thereby preventing cerebral oedema and inflammatory infiltrates.

7.
Acta Trop ; 235: 106654, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35988823

RESUMEN

Neglected tropical diseases (NTDs) are highly prevalent communicable diseases in tropical and subtropical countries, generally not economically attractive for drug development and related to poverty. In Brazil, more specifically, socioeconomic inequalities and health indicators are strongly influenced by skin color, race, and ethnicity, due to the historical process of slavery. In this context, it is important to understand the concept of systemic racism: a form of indirect racial discrimination present in many institutions, which determines the process of illness and death of the black population, the ethnic group most affected by these diseases. The main objective of this paper was to carry out a literature review on the socioeconomic aspects of these diseases, relating them to institutional racism, and to encourage reflection on the influence of this type of racism in the NTDs context. Therefore, we present a paper that brings a evident correlation between racism versus neglected populations, which are affected by equally neglected diseases. A more humane and comprehensive view is needed to realize that these illnesses affect neglected and vulnerable populations, who require decent living conditions, health, and social justice. We hope to provide, with this paper, enough, but not exhaust, knowledge to initiate the discussion about neglected diseases, their socioeconomic aspects and institutional racism.


Asunto(s)
Enfermedades Desatendidas , Medicina Tropical , Brasil/epidemiología , Humanos , Enfermedades Desatendidas/epidemiología , Pobreza , Racismo Sistemático
8.
Front Immunol ; 13: 931034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898514

RESUMEN

Malaria represents a significant public health burden to populations living in developing countries. The disease takes a relevant toll on pregnant women, who are more prone to developing severe clinical manifestations. Inflammation triggered in response to P. falciparum sequestration inside the placenta leads to physiological and structural changes in the organ, reflecting locally disrupted homeostasis. Altogether, these events have been associated with poor gestational outcomes, such as intrauterine growth restriction and premature delivery, contributing to the parturition of thousands of African children with low birth weight. Despite significant advances in the field, the molecular mechanisms that govern these outcomes are still poorly understood. Herein, we discuss the idea of how some housekeeping molecular mechanisms, such as those related to autophagy, might be intertwined with the outcomes of malaria in pregnancy. We contextualize previous findings suggesting that placental autophagy is dysregulated in P. falciparum-infected pregnant women with complementary research describing the importance of autophagy in healthy pregnancies. Since the functional role of autophagy in pregnancy outcomes is still unclear, we hypothesize that autophagy might be essential for circumventing inflammation-induced stress in the placenta, acting as a cytoprotective mechanism that attempts to ensure local homeostasis and better gestational prognosis in women with malaria in pregnancy.


Asunto(s)
Malaria Falciparum , Malaria , Plasmodium , Autofagia , Niño , Femenino , Homeostasis , Humanos , Inflamación/complicaciones , Malaria Falciparum/complicaciones , Placenta , Embarazo , Resultado del Embarazo
9.
Cell Death Dis ; 13(2): 144, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145061

RESUMEN

Malaria is an enormous burden on global health that caused 409,000 deaths in 2019. Severe malaria can manifest in the lungs, an illness known as acute respiratory distress syndrome (ARDS). Not much is known about the development of malaria-associated ARDS (MA-ARDS), especially regarding cell death in the lungs. We had previously established a murine model that mimics various human ARDS aspects, such as pulmonary edema, hemorrhages, pleural effusion, and hypoxemia, using DBA/2 mice infected with Plasmodium berghei ANKA. Here, we explored the mechanisms and the involvement of apoptosis in this syndrome. We found that apoptosis contributes to the pathogenesis of MA-ARDS, primarily as facilitators of the alveolar-capillary barrier breakdown. The protection of pulmonary endothelium by inhibiting caspase activation could be a promising therapeutic strategy to prevent the pathogenicity of MA-ARDS. Therefore, intervention in the programmed death cell mechanism could help patients not to develop severe malaria.


Asunto(s)
Malaria , Síndrome de Dificultad Respiratoria , Animales , Caspasas/metabolismo , Modelos Animales de Enfermedad , Humanos , Pulmón/metabolismo , Malaria/complicaciones , Malaria/metabolismo , Ratones , Ratones Endogámicos DBA
10.
Lancet Reg Health Am ; 12: 100285, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36776427

RESUMEN

Background: Malaria in pregnancy (MiP) is a public health problem in the Brazilian Amazon region that requires special attention due to associated serious adverse consequences, such as low birth weight, increased prematurity and spontaneous abortion rates. In Brazil, there have been no comprehensive epidemiological studies of MiP. In this study, we aimed to explore the spatial and spatiotemporal patterns of MiP in Brazil and epidemiologically characterize this population of pregnant women over a period of 15 years. Methods: We performed a national-scale ecological analysis using a Bayesian space-time hierarchical model to estimate the incidence rates of MiP between 1 January 2004 and 31 December 2018. We mapped the high-incidence clusters among pregnant women aged 10-49 years old using a Poisson model, and we characterized the population based on data from the Epidemiological Surveillance Information System for Malaria (SIVEP-Malaria). Findings: We consolidated the data of 61,833 women with MiP in Brazil. Our results showed a reduction of 50·1% (95% CI: 47·3 to 52·9) in the number of malaria cases over the period analysed, with Plasmodium vivax malaria having the highest incidence. MiP was widely distributed throughout the Amazon region, and spatial and spatiotemporal analyses revealed statistically significant clusters in some municipalities of Amazonas, Acre, Rondônia and Pará. In addition, we observed that younger pregnant women had a higher risk of infection, and the administration of appropriate treatment requires more attention. Interpretation: This nationwide study provides robust evidence that, despite the reduction in the number of MiP cases in the country, it remains a serious public health problem, especially for young pregnant women. Our analyses highlight focus areas for strengthening interventions to control and eliminate MiP. Funding: FAPESP and CNPq - Brazil.

11.
PLoS Negl Trop Dis ; 15(4): e0009390, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33914739

RESUMEN

BACKGROUND: Malaria in Brazil represents one of the highest percentages of Latin America cases, where approximately 84% of infections are attributed to Plasmodium (P.) vivax. Despite the high incidence, many aspects of gestational malaria resulting from P. vivax infections remain poorly studied. As such, we aimed to evaluate the consequences of P. vivax infections during gestation on the health of mothers and their neonates in an endemic area of the Amazon. METHODS AND FINDINGS: We have conducted an observational cohort study in Brazilian Amazon between January 2013 and April 2015. 600 pregnant women were enrolled and followed until delivery. After applying exclusion criteria, 329 mother-child pairs were included in the analysis. Clinical data regarding maternal infection, newborn's anthropometric measures, placental histopathological characteristics, and angiogenic and inflammatory factors were evaluated. The presence of plasma IgG against the P. vivax (Pv) MSP119 protein was used as marker of exposure and possible associations with pregnancy outcomes were analyzed. Multivariate logistic regression analysis revealed that P. vivax infections during the first trimester of pregnancy are associated with adverse gestational outcomes such as premature birth (adjusted odds ratio [aOR] 8.12, 95% confidence interval [95%CI] 2.69-24.54, p < 0.0001) and reduced head circumference (aOR 3.58, 95%CI 1.29-9.97, p = 0.01). Histopathology analysis showed marked differences between placentas from P. vivax-infected and non-infected pregnant women, especially regarding placental monocytes infiltrate. Placental levels of vasomodulatory factors such as angiopoietin-2 (ANG-2) and complement proteins such as C5a were also altered at delivery. Plasma levels of anti-PvMSP119 IgG in infected pregnant women were shown to be a reliable exposure marker; yet, with no association with improved pregnancy outcomes. CONCLUSIONS: This study indicates that P. vivax malaria during the first trimester of pregnancy represents a higher likelihood of subsequent poor pregnancy outcomes associated with marked placental histologic modification and angiogenic/inflammatory imbalance. Additionally, our findings support the idea that antibodies against PvMSP119 are not protective against poor pregnancy outcomes induced by P. vivax infections.


Asunto(s)
Malaria Vivax/patología , Placenta/patología , Plasmodium vivax/patogenicidad , Complicaciones Infecciosas del Embarazo/patología , Resultado del Embarazo , Adolescente , Adulto , Antígenos de Protozoos/inmunología , Brasil , Femenino , Humanos , Inmunoglobulina G/sangre , Recién Nacido , Modelos Logísticos , Malaria Falciparum/epidemiología , Malaria Vivax/diagnóstico , Malaria Vivax/inmunología , Masculino , Análisis Multivariante , Plasmodium vivax/inmunología , Embarazo , Complicaciones Infecciosas del Embarazo/diagnóstico , Primer Trimestre del Embarazo , Nacimiento Prematuro/etiología , Estudios Prospectivos , Adulto Joven
12.
PLoS One ; 15(5): e0233864, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32470082

RESUMEN

Malaria-associated acute respiratory distress syndrome (ARDS) is an inflammatory disease causing alveolar-pulmonary barrier lesion and increased vascular permeability characterized by severe hypoxemia. Computed tomography (CT), among other imaging techniques, allows the morphological and quantitative identification of lung lesions during ARDS. This study aims to identify the onset of malaria-associated ARDS development in an experimental model by imaging diagnosis. Our results demonstrated that ARDS-developing mice presented decreased gaseous exchange and pulmonary insufficiency, as shown by the SPECT/CT technique. The pulmonary aeration disturbance in ARDS-developing mice on the 5th day post infection was characterized by aerated tissues decrease and nonaerated tissue accumulation, demonstrating increased vascular permeability and pleural effusion. The SPECT/CT technique allowed the early diagnosis in the experimental model, as well as the identification of the pulmonary aeration. Notwithstanding, despite the fact that this study contributes to better understand lung lesions during malaria-associated ARDS, further imaging studies are needed.


Asunto(s)
Pulmón/diagnóstico por imagen , Malaria/complicaciones , Síndrome de Dificultad Respiratoria/complicaciones , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Parasitemia/complicaciones , Perfusión , Análisis de Supervivencia , Tecnecio/metabolismo
13.
Sci Adv ; 6(10): eaax6346, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32181339

RESUMEN

Placental malaria (PM) is associated with severe inflammation leading to abortion, preterm delivery, and intrauterine growth restriction. Innate immunity responses play critical roles, but the mechanisms underlying placental immunopathology are still unclear. Here, we investigated the role of inflammasome activation in PM by scrutinizing human placenta samples from an endemic area and ablating inflammasome components in a PM mouse model. The reduction in birth weight in babies from infected mothers is paralleled by increased placental expression of AIM2 and NLRP3 inflammasomes. Using genetic dissection, we reveal that inflammasome activation pathways are involved in the production and detrimental action of interleukin-1ß (IL-1ß) in the infected placenta. The IL-1R pharmacological antagonist Anakinra improved pregnancy outcomes by restoring fetal growth and reducing resorption in an experimental model. These findings unveil that IL-1ß-mediated signaling is a determinant of PM pathogenesis, suggesting that IL-1R antagonists can improve clinical outcomes of malaria infection in pregnancy.


Asunto(s)
Inflamasomas/efectos de los fármacos , Interleucina-1beta/inmunología , Malaria Falciparum/inmunología , Malaria/inmunología , Plasmodium falciparum/patogenicidad , Complicaciones Parasitarias del Embarazo/inmunología , Transducción de Señal/efectos de los fármacos , Animales , Caspasa 1/genética , Caspasa 1/inmunología , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Femenino , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Factores Inmunológicos/farmacología , Inflamasomas/genética , Inflamasomas/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/genética , Malaria/tratamiento farmacológico , Malaria/genética , Malaria/parasitología , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Plasmodium berghei/inmunología , Plasmodium berghei/patogenicidad , Plasmodium falciparum/inmunología , Embarazo , Complicaciones Parasitarias del Embarazo/genética , Complicaciones Parasitarias del Embarazo/parasitología , Complicaciones Parasitarias del Embarazo/prevención & control , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Transducción de Señal/inmunología , Células THP-1 , Trofoblastos/efectos de los fármacos , Trofoblastos/inmunología , Trofoblastos/parasitología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
14.
J Immunol Res ; 2019: 3105817, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31871954

RESUMEN

The severity of Plasmodium falciparum malaria is associated with parasite cytoadherence, but there is limited knowledge about the effect of parasite cytoadherence in malaria-associated acute respiratory distress syndrome (ARDS). Our objective was to evaluate the cytoadherence of infected red blood cells (iRBCs) in a murine model of ARDS and to appraise a potential function of endothelial protein C receptor (EPCR) in ARDS pathogenesis. DBA/2 mice infected with P. berghei ANKA were classified as ARDS- or hyperparasitemia- (HP-) developing mice according to respiratory parameters and parasitemia. Lungs, blood, and bronchoalveolar lavage were collected for gene expression or protein analyses. Primary cultures of microvascular lung endothelial cells from DBA/2 mice were analyzed for iRBC interactions. Lungs from ARDS-developing mice showed evidence of iRBC accumulation along with an increase in EPCR and TNF concentrations. Furthermore, TNF increased iRBC adherence in vitro. Dexamethasone-treated infected mice showed low levels of TNF and EPCR mRNA expression and, finally, decreased vascular permeability, thus protecting mice from ARDS. In conclusion, we identified that increased iRBC cytoadherence in the lungs underlies malaria-associated ARDS in DBA/2-infected mice and that inflammation increased cytoadherence capacity, suggesting a participation of EPCR and a conceivable target for drug development.


Asunto(s)
Susceptibilidad a Enfermedades , Receptor de Proteína C Endotelial/metabolismo , Malaria/complicaciones , Malaria/parasitología , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Inmunohistoquímica , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Plasmodium berghei , Plasmodium falciparum , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/patología
15.
PLoS One ; 14(12): e0226117, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31805150

RESUMEN

Plasmodium (P.) falciparum malaria during pregnancy has been frequently associated with severe consequences such as maternal anemia, abortion, premature birth, and reduced birth weight. Placental damage promotes disruption of the local homeostasis; though, the mechanisms underlying these events are still to be elucidated. Autophagy is a fundamental homeostatic mechanism in the natural course of pregnancy by which cells self-recycle in order to survive in stressful environments. Placentas from non-infected and P. falciparum-infected women during pregnancy were selected from a previous prospective cohort study conducted in the Brazilian Amazon (Acre, Brazil). Newborns from infected women experienced reduced birth weight (P = 0.0098) and placental immunopathology markers such as monocyte infiltrate (P < 0.0001) and IL-10 production (P = 0.0122). The placentas were evaluated for autophagy-related molecules. As a result, we observed reduced mRNA levels of ULK1 (P = 0.0255), BECN1 (P = 0.0019), and MAP1LC3B (P = 0.0086) genes in placentas from P. falciparum-infected, which was more striking in those diagnosed with placental malaria. Despite the protein levels of these genes followed the same pattern, the observed reduction was not statistically significant in placentas from P. falciparum-infected women. Nevertheless, our data suggest that chronic placental immunopathology due to P. falciparum infection leads to autophagy dysregulation, which might impair local homeostasis during malaria in pregnancy that may result in poor pregnancy outcomes.


Asunto(s)
Autofagia , Placenta/citología , Placenta/parasitología , Plasmodium falciparum/fisiología , Adolescente , Adulto , Regulación hacia Abajo , Femenino , Humanos , Placenta/metabolismo , Embarazo , ARN Mensajero/genética , Adulto Joven
16.
Front Microbiol ; 10: 1369, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275284

RESUMEN

Annually, many pregnancies occur in areas of Plasmodium spp. transmission, particularly in underdeveloped countries with widespread poverty. Estimations have suggested that several million women are at risk of developing malaria during pregnancy. In particular cases, systemic infection caused by Plasmodium spp. may extend to the placenta, dysregulating local homeostasis and promoting the onset of placental malaria; these processes are often associated with increased maternal and fetal mortality, intrauterine growth restriction, preterm delivery, and reduced birth weight. The endeavor to understand and characterize the mechanisms underlying disease onset and placental pathology face several ethical and logistical obstacles due to explicit difficulties in assessing human gestation and biological material. Consequently, the advent of murine experimental models for the study of malaria during pregnancy has substantially contributed to our understanding of this complex pathology. Herein, we summarize research conducted during recent decades using murine models of malaria during pregnancy and highlight the most relevant findings, as well as discuss similarities to humans and the translational capacity of achieved results.

17.
Sci Rep ; 9(1): 7575, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31110285

RESUMEN

Malaria causes hepatic inflammation and damage, which contribute to disease severity. The pro-inflammatory cytokine interleukin (IL)-1α is released by non-hematopoietic or hematopoietic cells during liver injury. This study established the role of IL-1α in the liver pathology caused by blood-stage P. chabaudi malaria. During acute infection, hepatic inflammation and necrosis were accompanied by NLRP3 inflammasome-independent IL-1α production. Systemically, IL-1α deficiency attenuated weight loss and hypothermia but had minor effects on parasitemia control. In the liver, the absence of IL-1α reduced the number of TUNEL+ cells and necrotic lesions. This finding was associated with a lower inflammatory response, including TNF-α production. The main source of IL-1α in the liver of infected mice was inflammatory cells, particularly neutrophils. The implication of IL-1α in liver inflammation and necrosis caused by P. chabaudi infection, as well as in weight loss and hypothermia, opens up new perspectives for improving malaria outcomes by inhibiting IL-1 signaling.


Asunto(s)
Inflamación/inmunología , Interleucina-1alfa/inmunología , Hígado/patología , Malaria/inmunología , Plasmodium chabaudi/inmunología , Animales , Inflamación/parasitología , Inflamación/patología , Hígado/inmunología , Hígado/parasitología , Malaria/parasitología , Malaria/patología , Masculino , Ratones Endogámicos C57BL , Necrosis , Factor de Necrosis Tumoral alfa/inmunología
18.
JAMA Netw Open ; 2(5): e193300, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31050780

RESUMEN

Importance: Malaria during pregnancy is associated with adverse events for the fetus and newborn, but the association of malaria during pregnancy with the head circumference of the newborn is unclear. Objective: To investigate the association of malaria during pregnancy with fetal head growth. Design, Setting, and Participants: Two cohort studies were conducted at the general maternity hospital of Cruzeiro do Sul (Acre, Brazil) in the Amazonian region. One cohort study prospectively enrolled noninfected and malaria-infected pregnant women who were followed up until delivery, between January 2013 and April 2015. The other cohort study was assembled retrospectively using clinical and malaria data from all deliveries that occurred between January 2012 and December 2013. Data analyses were conducted from January to August 2017 and revised in November 2018. Clinical data from pregnant women and anthropometric measures of their newborns were evaluated. A total of 600 pregnant women were enrolled through volunteer sampling (prospective cohort study), and 4697 pregnant women were selected by population-based sampling (retrospective cohort study). After application of exclusion criteria, data from 251 (prospective cohort study) and 232 (retrospective cohort study) malaria-infected and 158 (prospective cohort study) and 3650 (retrospective cohort study) noninfected women were evaluated. Exposure: Malaria during pregnancy. Main Outcomes and Measures: The primary end point was the incidence of altered head circumference in newborns delivered from malaria-infected mothers compared with that from noninfected mothers. Secondary end points included measures of placental pathology relative to newborn head circumference. Results: In total, 4291 maternal-child pairs were analyzed. Among 409 newborns in the prospective cohort study, the mothers of 251 newborns had malaria during pregnancy, infected with Plasmodium vivax, Plasmodium falciparum, or both. Among 3882 newborns in the retrospective cohort study, 232 were born from mothers that had malaria during pregnancy. The prevalence of newborns with a small head (19 [30.7%] in the prospective cohort study and 30 [36.6%] in the retrospective cohort study) and the prevalence of microcephaly among newborns (5 [8.1%] in the prospective cohort study and 6 [7.3%] in the retrospective cohort study) were higher among newborns from women infected with P falciparum during pregnancy. Multivariate logistic regression analyses revealed that P falciparum infection during pregnancy represented a significant risk factor for the occurrence of small head circumference in newborns (prospective cohort study: odds ratio, 3.15; 95% CI, 1.52-6.53; P = .002; retrospective cohort study: odds ratio, 1.91; 95% CI, 1.21-3.04; P = .006). Placental pathologic findings corroborated this association, with more syncytial nuclear aggregates and inflammatory infiltrates occurring in placentas of newborns born with decreased head circumference. Conclusions and Relevance: This study indicates that falciparum malaria during pregnancy is associated with decreased head circumference in newborns, which is in turn associated with evidence of placental malaria.


Asunto(s)
Cabeza/anatomía & histología , Malaria Falciparum/fisiopatología , Exposición Materna/efectos adversos , Complicaciones Infecciosas del Embarazo/epidemiología , Adulto , Brasil/epidemiología , Estudios de Cohortes , Femenino , Humanos , Recién Nacido , Embarazo , Prevalencia , Estudios Prospectivos , Estudios Retrospectivos
19.
Front Microbiol ; 10: 68, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30761111

RESUMEN

Placental malaria (PM) remains a severe public health problem in areas of high malaria transmission. Despite the efforts to prevent infection poor outcomes in Plasmodium endemic areas, there is still a considerable number of preterm births and newborns with low birth weight resulting from PM. Although local inflammation triggered in response to malaria is considered crucial in inducing placental damage, little is known about the differential influence of maternal and fetal immune responses to the disease progression. Therefore, using a PM mouse model, we sought to determine the contribution of maternal and fetal innate immune responses to PM development. For this, we conducted a series of cross-breeding experiments between mice that had differential expression of the MyD88 adaptor protein to obtain mother and correspondent fetuses with distinct genetic backgrounds. By evaluating fetal weight and placental vascular spaces, we have shown that the expression of MyD88 in fetal tissue has a significant impact on PM outcomes. Our results highlighted the existence of a distinct contribution of maternal and fetal immune responses to PM onset. Thus, contributing to the understanding of how inflammatory processes lead to the dysregulation of placental homeostasis ultimately impairing fetal development.

20.
PLoS Negl Trop Dis ; 12(8): e0006617, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30067739

RESUMEN

Cardiomyopathy is the most serious consequence of Chagas disease, a neglected human disorder caused by Trypanosoma cruzi infection. Because T. cruzi parasites invade cardiomyocytes, we sought to investigate whether these cells recognize the parasite in vivo by receptors signaling through the MyD88 adaptor, which mediates the activation pathway of most Toll-like receptors (TLRs) and IL-1/IL-18 receptors, and influence the development of acute cardiac pathology. First, we showed that HL-1 cardiac muscle cell line expresses MyD88 gene and protein at resting state and after T. cruzi infection. To evaluate the role in vivo of MyD88 expression in cardiomyocytes, we generated Mer+MyD88flox+/+ mice in which tamoxifen treatment is expected to eliminate the MyD88 gene exclusively in cardiomyocytes. This Cre-loxP model was validated by both PCR and western blot analysis; tamoxifen treatment of Mer+MyD88flox+/+ mice resulted in decreased MyD88 gene and protein expression in the heart, but not in the spleen, while had no effect on littermates. The elimination of MyD88 in cardiomyocytes determined a lower increase in CCL5, IFNγ and TNFα gene transcription during acute infection by T. cruzi parasites of the Y strain, but it did not significantly modify heart leukocyte infiltration and parasitism. Together, our results show that cardiomyocytes can sense T. cruzi infection through MyD88-mediated molecular pathways and contribute to the local immune response to the parasite. The strong pro-inflammatory response of heart-recruited leukocytes may overshadow the effects of MyD88 deficiency in cardiomyocytes on the local leukocyte recruitment and T. cruzi control during acute infection.


Asunto(s)
Cardiomiopatía Chagásica/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Miocitos Cardíacos/metabolismo , Trypanosoma cruzi/inmunología , Animales , Línea Celular , Cardiomiopatía Chagásica/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Humanos , Ratones Noqueados , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/genética , Miocardio/inmunología , Miocardio/metabolismo , ARN Mensajero , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA