Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CPT Pharmacometrics Syst Pharmacol ; 11(11): 1458-1471, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36251220

RESUMEN

A population pharmacokinetic (PopPK) model was previously developed for cemiplimab in patients with solid tumors, including advanced cutaneous squamous cell carcinoma (CSCC). Here, we update the existing PopPK model and characterize exposure-response relationships using efficacy and safety data obtained in patients with recurrent or metastatic cervical cancer (R/M CC). To improve model stability and robustness of the existing PopPK model in 1062 patients, the random-effect error model was revised, and structural covariates were removed from the base model to be tested in the covariate analysis. The updated model was used for external validation of cemiplimab pharmacokinetics (PK) in patients with R/M CC on cemiplimab monotherapy (350 mg every 3 weeks intravenously) from a phase III study (NCT03257267). Exposure-response relationships for cemiplimab efficacy (overall survival [OS], progression-free survival [PFS], duration of response [DOR], objective response rate [ORR]), and safety (immune-related adverse events [irAEs]) were analyzed in 295 patients with R/M CC from the aforementioned study. The updated PopPK model showed improved stability with 94.8% successful bootstrap runs vs. 47.6% in the prior model. Cemiplimab exposure was similar across tumor types, including basal cell carcinoma, CSCC, and non-small cell lung cancer. External validation showed the updated model adequately described cemiplimab PK in patients with R/M CC. In exposure-response efficacy analyses, Cox proportional hazard modeling (CPHM) showed no trend between exposure and OS, Kaplan-Meier plots showed no trend between exposure and PFS or DOR, and logistic regression analyses conducted on ORR showed no exposure-response relationship. In exposure-response safety analyses, CPHM showed no trend between exposure and irAEs.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Neoplasias Cutáneas , Neoplasias del Cuello Uterino , Femenino , Humanos , Antineoplásicos Inmunológicos/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/inducido químicamente
2.
Neurol Ther ; 11(1): 353-371, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35041178

RESUMEN

INTRODUCTION: Diroximel fumarate (DRF) is a next-generation oral fumarate that is indicated in the USA for relapsing forms of multiple sclerosis (MS). A joint population pharmacokinetic model was developed for the major active metabolite (monomethyl fumarate, MMF) and the major inactive metabolite (2-hydroxyethyl succinimide, HES) of DRF. METHODS: MMF and HES data were included from 341 healthy volunteers and 48 patients with MS across 11 phase I and III studies in which DRF was administered as single or multiple doses. Population modeling was performed with NONMEM version 7.3 with the first-order conditional estimation method. RESULTS: Estimated MMF clearance (CLMMF), volume of distribution, and absorption rate constant (Ka) were 13.5 L/h, 30.4 L, and 5.04 h-1, respectively. CLMMF and HES clearance (CLHES) increased with increasing body weight. CLHES decreased with decreasing renal function. CLMMF and CLHES were 28% and 12% lower in patients with MS than in healthy volunteers, respectively. Ka was reduced in the presence of low-, medium-, and high-fat meals by 37%, 51%, and 67%, respectively, for MMF; and by 34%, 49%, and 62%, respectively, for HES. CONCLUSIONS: Age, sex, race, and baseline liver function parameters such as total bilirubin, albumin, and aspartate aminotransferase were not considered to be significant predictors of MMF or HES disposition.

3.
Biochem Pharmacol ; 156: 147-156, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30121252

RESUMEN

Biphenyl hydrolase-like protein (BPHL) is a novel human serine hydrolase that was originally cloned from a breast carcinoma cDNA library and shown to convert valacyclovir to acyclovir and valganciclovir to ganciclovir. However, the exclusivity of this process has not been determined and, indeed, it is possible that a number of esterases/proteases may mediate the hydrolysis of valacyclovir and similar prodrugs. The objectives of the present study were to evaluate the in situ intestinal permeability and stability of valacyclovir in wildtype (WT) and Bphl knockout (KO) mice, as well as the in vivo oral absorption and intravenous disposition of valacyclovir and acyclovir in the two mouse genotypes. We found that Bphl knockout mice had no obvious phenotype and that Bphl ablation did not alter the jejunal permeability of valacyclovir during in situ perfusions (i.e., 0.54 × 10-4 in WT vs. 0.53 × 10-4 cm/s in KO). Whereas no meaningful changes occurred between genotypes in the gene expression of proton-coupled oligopeptide transporters (i.e., PepT1, PepT2, PhT1, PhT2), enzymatic upregulation of Cyp3a11, Cyp3a16, Abhd14a and Abhd14b was observed in some tissues of Bphl knockout mice. Most importantly, we found that valacyclovir was rapidly and efficiently hydrolyzed to acyclovir in the absence of BPHL, and that hydrolysis was more extensive after the oral vs. intravenous route of administration (for both genotypes). Taken as a whole, BPHL is not obligatory for the conversion of valacyclovir to acyclovir either presystemically or systemically.


Asunto(s)
Antivirales/farmacocinética , Hidrolasas de Éster Carboxílico/metabolismo , Valaciclovir/farmacocinética , Administración Oral , Animales , Antivirales/metabolismo , Área Bajo la Curva , Hidrolasas de Éster Carboxílico/genética , Semivida , Inyecciones Intravenosas , Ratones , Ratones Noqueados , Valaciclovir/administración & dosificación , Valaciclovir/metabolismo
4.
Biochem Pharmacol ; 155: 1-7, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29935147

RESUMEN

The purpose of this work was to evaluate the intestinal permeability, oral absorption and disposition of the ester prodrug valacyclovir in wildtype mice and a huPepT1 transgenic mouse model. PepT1 (SLC15A1) is a transporter apically expressed along the lumen of the gastrointestinal tract and is responsible for the absorption of di-/tripeptides, ACE inhibitors, ß-lactam antibiotics and numerous prodrugs. Unfortunately, PepT1-mediated substrates that have been extensively studied were shown to exhibit species-dependent absorption and pharmacokinetics. Accordingly, in situ intestinal perfusion studies were conducted and valacyclovir uptake was shown to have a 30-fold lower Km and 100-fold lower Vmax in huPepT1 compared to wildtype mice. Moreover, inhibition studies demonstrated that the huPepT1 transporter alone was responsible for valacyclovir uptake, and segment-dependent studies reported significant reductions in permeability along the length of small intestine in huPepT1 mice. Subsequent oral administration studies revealed that the in vivo rate and extent of valacyclovir absorption were lower in huPepT1 mice, as indicated by 3-fold lower Cmax and 3-fold higher Tmax values, and an AUC0-180 that was 80% of that observed in wildtype mice. However, no significant changes in drug disposition were observed between genotypes after intravenous bolus administration of acyclovir. Lastly, mass balance studies established that the bioavailability of acyclovir, after oral dosing of valacyclovir, was 77.5% in wildtype mice and 52.8% in huPepT1 mice, which corroborated values of 51.3% in clinical studies. Thus, it appears the huPepT1 transgenic mice may be a better model to study prodrug absorption and disposition in humans than wildtype mice.


Asunto(s)
Antivirales/metabolismo , Absorción Intestinal/fisiología , Mucosa Bucal/metabolismo , Transportador de Péptidos 1/biosíntesis , Profármacos/metabolismo , Valaciclovir/metabolismo , Administración Oral , Animales , Antivirales/administración & dosificación , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Absorción Intestinal/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mucosa Bucal/efectos de los fármacos , Transportador de Péptidos 1/genética , Profármacos/administración & dosificación , Valaciclovir/administración & dosificación
5.
J Pharm Sci ; 103(4): 1032-42, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24549831

RESUMEN

Disulfide bonds stabilize proteins by cross-linking distant regions into a compact three-dimensional structure. They can also participate in hydrolytic and oxidative pathways to form nonnative disulfide bonds and other reactive species. Such covalent modifications can contribute to protein aggregation. Here, we present experimental data for the mechanism of thiol-disulfide exchange in tryptic peptides derived from human growth hormone in aqueous solution. Reaction kinetics was monitored to investigate the effect of pH (6.0-10.0), temperature (4-50°C), oxidation suppressants [ethylenediaminetetraacetic acid (EDTA) and N2 sparging], and peptide secondary structure (amide cyclized vs. open form). The concentrations of free thiol containing peptides, scrambled disulfides, and native disulfide-linked peptides generated via thiol-disulfide exchange and oxidation reactions were determined using reverse-phase HPLC and liquid chromatography-mass spectrometry. Concentration versus time data were fitted to a mathematical model using nonlinear least squares regression analysis. At all pH values, the model was able to fit the data with R(2) ≥ 0.95. Excluding oxidation suppressants (EDTA and N2 sparging) resulted in an increase in the formation of scrambled disulfides via oxidative pathways but did not influence the intrinsic rate of thiol-disulfide exchange. In addition, peptide secondary structure was found to influence the rate of thiol-disulfide exchange.


Asunto(s)
Disulfuros/química , Hormona del Crecimiento/química , Hormona de Crecimiento Humana/química , Compuestos de Sulfhidrilo/química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Ácido Edético/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA