Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 32(12): 3089-3101, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36934423

RESUMEN

Anthropogenic changes have altered the historical distributions of many North American taxa. As environments shift, ecological and evolutionary processes can combine in complex ways to either stimulate or inhibit range expansion. Here, we examined the role of evolution in a rapid range expansion whose ecological context has been well-documented, Anna's Hummingbird (Calypte anna). Previous studies have suggested that the C. anna range expansion is the result of an ecological release facilitated by human-mediated environmental changes, where access to new food sources have allowed further filling of the abiotic niche. We examined the role of gene flow and adaptation during range expansion from their native California breeding range, north into Canada and east into New Mexico and Texas, USA. Using low coverage whole genome sequencing we found high genetic diversity, low divergence, and little evidence of selection on the northern and eastern expansion fronts. Additionally, there are no clear barriers to gene flow across the native and expanded range. The lack of selective signals between core and expanded ranges could reflect (i) an absence of novel selection pressure in the expanded range (supporting the ecological release hypothesis), (ii) swamping of adaptive variation due to high gene flow, or (iii) limitations of genome scans for detecting small shifts in allele frequencies across many loci. Nevertheless, our results provide an example where strong selection is not apparent during a rapid, contemporary range shift.


Asunto(s)
Aves , Flujo Génico , Animales , Humanos , Aves/genética , New Mexico , Texas , Cruzamiento
2.
PLoS One ; 17(9): e0274059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36126057

RESUMEN

Although rare, hybrids are more common in broadly sympatric waterfowl than in any other avian family; yet, the behavioral ecology explaining their generation has remained controversial. Leading hypotheses are forced interspecific copulations, mis-imprinting caused by mixed broods, and scarcity of conspecific mates. Using a large sample of hybrid ducks solicited from North American hunters we evaluated these hypotheses by genetically determining the mother and father species of F1 hybrids. Based on abundances in areas where their breeding ranges overlap, the frequency of hybrids varied greatly from expectations, with hybrids between species within recently derived clades being much more frequent than those between more divergent clades. Forced copulations, as measured by large phallus-length asymmetries between parentals, strongly predicted the father species of most F1 hybrids. Thus, most Anas acuta x A. platyrhynchos (Northern Pintail x Mallard) F1s were sired by A. acuta, and most A. platyrhynchos x Mareca strepera (Mallard x Gadwall) F1s were sired by A. platyrhynchos. Siring asymmetries were consistent with phallus length asymmetries in five additional parental combinations, but none had samples large enough to be individually statistically significant. The exception to this trend was our sample of nine A. platyrhynchos x Mareca americana (Mallard x Gadwall) F1s, for which a large phallus asymmetry failed to predict the father species. Hybrids were rare in brood parasitic species, suggesting mis-imprinting to be an unlikely cause of most hybrids; however, our samples of hybrids from regular brood parasites were inadequate to strongly address this hypothesis. We could test the scarcity of mates hypothesis for only a single hybrid combination and it contradicted our prediction: most F1 M. Penelope x M. americana (Eurasian x American Wigeon) were sired by M. penelope, strongly contradicting our prediction that female M. penelope wintering in enormous flocks of M. americana (American Wigeon) on the west coast of North America would have difficulty finding conspecific mates. In general, our results support interspecific forced copulations as the predominant behavioral mechanism generating hybrids in North temperate waterfowl.


Asunto(s)
Patos , Galliformes , Animales , Copulación , Patos/genética , Femenino , América del Norte
3.
Mol Ecol ; 29(5): 956-969, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32034818

RESUMEN

Most species and therefore most hybrid zones have historically been defined using phenotypic characters. However, both speciation and hybridization can occur with negligible morphological differentiation. Recently developed genomic tools provide the means to better understand cryptic speciation and hybridization. The Northwestern Crow (Corvus caurinus) and American Crow (Corvus brachyrhynchos) are continuously distributed sister taxa that lack reliable traditional characters for identification. In this first population genomic study of Northwestern and American crows, we use genomic SNPs (nuDNA) and mtDNA to investigate the degree of genetic differentiation between these crows and the extent to which they may hybridize. Our results indicate that American and Northwestern crows have distinct evolutionary histories, supported by two nuDNA ancestry clusters and two 1.1%-divergent mtDNA clades dating to the late Pleistocene, when glacial advances may have isolated crow populations in separate refugia. We document extensive hybridization, with geographic overlap of mtDNA clades and admixture of nuDNA across >900 km of western Washington and western British Columbia. This broad hybrid zone consists of late-generation hybrids and backcrosses, but not recent (e.g., F1) hybrids. Nuclear DNA and mtDNA clines had concordant widths and were both centred in southwestern British Columbia, farther north than previously postulated. Overall, our results suggest a history of reticulate evolution in American and Northwestern crows, perhaps due to recurring neutral expansion(s) from Pleistocene glacial refugia followed by lineage fusion(s). However, we do not rule out a contributing role for more recent potential drivers of hybridization, such as expansion into human-modified habitats.


Asunto(s)
Cuervos/genética , Genética de Población , Hibridación Genética , Animales , Colombia Británica , Núcleo Celular/genética , ADN Mitocondrial/genética , Evolución Molecular , Flujo Génico , Haplotipos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Washingtón
4.
Syst Biol ; 68(6): 956-966, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31135028

RESUMEN

Incomplete or geographically biased sampling poses significant problems for research in phylogeography, population genetics, phylogenetics, and species delimitation. Despite the power of using genome-wide genetic markers in systematics and related fields, approaches such as the multispecies coalescent remain unable to easily account for unsampled lineages. The Empidonax difficilis/Empidonax occidentalis complex of small tyrannid flycatchers (Aves: Tyrannidae) is a classic example of widely distributed species with limited phenotypic geographic variation that was broken into two largely cryptic (or "sibling") lineages following extensive study. Though the group is well-characterized north of the US Mexico border, the evolutionary distinctiveness and phylogenetic relationships of southern populations remain obscure. In this article, we use dense genomic and geographic sampling across the majority of the range of the E. difficilis/E. occidentalis complex to assess whether current taxonomy and species limits reflect underlying evolutionary patterns, or whether they are an artifact of historically biased or incomplete sampling. We find that additional samples from Mexico render the widely recognized species-level lineage E. occidentalis paraphyletic, though it retains support in the best-fit species delimitation model from clustering analyses. We further identify a highly divergent unrecognized lineage in a previously unsampled portion of the group's range, which a cline analysis suggests is more reproductively isolated than the currently recognized species E. difficilis and E. occidentalis. Our phylogeny supports a southern origin of these taxa. Our results highlight the pervasive impacts of biased geographic sampling, even in well-studied vertebrate groups like birds, and illustrate what is a common problem when attempting to define species in the face of recent divergence and reticulate evolution.


Asunto(s)
Marcadores Genéticos/genética , Filogenia , Pájaros Cantores/clasificación , Pájaros Cantores/genética , Animales , Variación Genética , México , Sesgo de Selección , Estados Unidos
5.
Am Nat ; 191(2): 259-268, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29351011

RESUMEN

In the painted bunting (Passerina ciris), a North American songbird, populations on the Atlantic coast and interior southern United States are known to be allopatric during the breeding season, but efforts to map connectivity with wintering ranges have been largely inconclusive. Using genomic and morphological data from museum specimens and banded birds, we found evidence of three genetically differentiated painted bunting populations with distinct wintering ranges and molt-migration phenologies. In addition to confirming that the Atlantic coast population remains allopatric throughout the annual cycle, we identified an unexpected migratory divide within the interior breeding range. Populations breeding in Louisiana winter on the Yucatán Peninsula and are parapatric with other interior populations that winter in mainland Mexico and Central America. Across the interior breeding range, genetic ancestry is also associated with variation in wing length, suggesting that selection may be promoting morphological divergence in populations with different migration strategies.


Asunto(s)
Migración Animal , Flujo Génico , Pájaros Cantores/genética , Animales , ADN Mitocondrial , Masculino , Filogeografía , Pájaros Cantores/anatomía & histología , Alas de Animales/anatomía & histología
6.
Mol Phylogenet Evol ; 110: 50-59, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28286101

RESUMEN

The large number of endemic species in Middle America is frequently attributed to the interplay of geographical barriers and historical climatic changes in the region. This process promotes genetic divergence between populations, and given enough time, may yield new species. Animals that inhabit mid-elevation or highland habitats may be disproportionately affected in this way. Genetic analyses of animals in this region allow us to better understand how historical patterns of isolation have influenced the generation of new species in this biodiversity hotspot. We studied the biogeography and systematics of two closely related genera of sparrows (Passerellidae): Melozone and Aimophila. Collectively, this group is distributed from the southwestern United States and southward as far as central Costa Rica. We sampled 81 individuals of 8 Melozone and 2 Aimophila species, from 19 localities distributed throughout their ranges. We reconstructed phylogenetic relationships and time-calibrated species trees using multilocus sequence data comprised of one mitochondrial gene and five nuclear genes. We conducted an ancestral area reconstruction analysis to determine the probability of ancestral range at each divergent event. Despite analyzing six loci, we were unable to obtain a fully resolved phylogenetic tree. We recovered four main lineages: lineage 1 includes four Melozone species distributed north of Isthmus of Tehuantepec (M. albicollis, M. crissalis, M. aberti, M. fusca); lineage 2 includes three Melozone species distributed south of the Isthmus of Tehuantepec (M. biarcuata, M. cabanisi, M. leucotis); lineage 3 lineage consists of a single species endemic to the Pacific coast of Mexico (M. kieneri); and lineage 4 includes the more widely distributed sparrows in the genus Aimophila. Our analyses suggest that these genera probably originated during the late Miocene in the Madrean Highlands of southern Mexico. We identified dispersal as the prevalent cause of speciation in this clade with most lineages dispersing to their current distributions from southern Mexico either to the north following a developing and expanding Madro-Tertiary flora, or to the south across the Isthmus of Tehuantepec. A similar pattern of dispersal from this biogeographic region has been reported in other taxa including fishes, reptiles, and birds. Our results reveal that the four lineages identified represent geographically coherent and ecologically similar assemblages of taxa. Finally, when our genetic results are considered, along with apparent differences in morphology and song, the allopatric forms M. b. cabanisi and M. l. occipitalis warrant recognition as biological species.


Asunto(s)
Filogenia , Filogeografía , Gorriones/clasificación , Animales , Secuencia de Bases , Calibración , ADN Mitocondrial/genética , Genes Mitocondriales , Funciones de Verosimilitud , Programas Informáticos , Sudoeste de Estados Unidos , Gorriones/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...