Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969763

RESUMEN

Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions. We use this analysis on macrophages, immune cells that undergo rapid metabolic switches upon sensing bacterial and inflammatory stimuli. Our results identify lipid droplets (LDs) as primary inflammatory responder organelle, which forms three- and four-way interactions with other organelles. While clusters with endoplasmic reticulum (ER) and mitochondria (mitochondria-ER-LD unit) help supply fatty acids for LD growth, the additional recruitment of peroxisomes (mitochondria-ER-peroxisome-LD unit) supports fatty acid efflux from LDs. Interference with individual components of these units has direct functional consequences for inflammatory lipid mediator synthesis. Together, we show that macrophages form functional multi-organellar units to support metabolic adaptation and provide an experimental strategy to identify organelle-metabolic signalling hubs.

2.
Nat Metab ; 4(7): 856-866, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35864246

RESUMEN

Successful elimination of bacteria in phagocytes occurs in the phago-lysosomal system, but also depends on mitochondrial pathways. Yet, how these two organelle systems communicate is largely unknown. Here we identify the lysosomal biogenesis factor transcription factor EB (TFEB) as regulator for phago-lysosome-mitochondria crosstalk in macrophages. By combining cellular imaging and metabolic profiling, we find that TFEB activation, in response to bacterial stimuli, promotes the transcription of aconitate decarboxylase (Acod1, Irg1) and synthesis of its product itaconate, a mitochondrial metabolite with antimicrobial activity. Activation of the TFEB-Irg1-itaconate signalling axis reduces the survival of the intravacuolar pathogen Salmonella enterica serovar Typhimurium. TFEB-driven itaconate is subsequently transferred via the Irg1-Rab32-BLOC3 system into the Salmonella-containing vacuole, thereby exposing the pathogen to elevated itaconate levels. By activating itaconate production, TFEB selectively restricts proliferating Salmonella, a bacterial subpopulation that normally escapes macrophage control, which contrasts TFEB's role in autophagy-mediated pathogen degradation. Together, our data define a TFEB-driven metabolic pathway between phago-lysosomes and mitochondria that restrains Salmonella Typhimurium burden in macrophages in vitro and in vivo.


Asunto(s)
Lisosomas , Succinatos , Autofagia/fisiología , Lisosomas/metabolismo , Macrófagos/metabolismo , Succinatos/metabolismo , Succinatos/farmacología
3.
Front Cell Dev Biol ; 10: 871789, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478973

RESUMEN

Neutrophils are key cells of our innate immune response with essential roles for eliminating bacteria and fungi from tissues. They are also the prototype of an amoeboid migrating leukocyte. As one of the first blood-recruited immune cell types during inflammation and infection, these cells can invade almost any tissue compartment. Once in the tissue, neutrophils undergo rapid shape changes and migrate at speeds higher than most other immune cells. They move in a substrate-independent manner in interstitial spaces and do not follow predetermined tissue paths. Instead, neutrophil navigation is largely shaped by the chemokine and chemoattractant milieu around them. This highlights the decisive role of attractant-sensing G-protein coupled receptors (GPCRs) and downstream molecular pathways for controlling amoeboid neutrophil movement in tissues. A diverse repertoire of cell-surface expressed GPCRs makes neutrophils the perfect sentinel cell type to sense and detect danger-associated signals released from wounds, inflamed interstitium, dying cells, complement factors or directly from tissue-invading microbes. Moreover, neutrophils release attractants themselves, which allows communication and coordination between individual cells of a neutrophil population. GPCR-mediated positive feedback mechanisms were shown to underlie neutrophil swarming, a population response that amplifies the recruitment of amoeboid migrating neutrophils to sites of tissue injury and infection. Here we discuss recent findings and current concepts that counteract excessive neutrophil accumulation and swarm formation. In particular, we will focus on negative feedback control mechanisms that terminate neutrophil swarming to maintain the delicate balance between tissue surveillance, host protection and tissue destruction.

4.
Science ; 372(6548)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34140358

RESUMEN

Neutrophils communicate with each other to form swarms in infected organs. Coordination of this population response is critical for the elimination of bacteria and fungi. Using transgenic mice, we found that neutrophils have evolved an intrinsic mechanism to self-limit swarming and avoid uncontrolled aggregation during inflammation. G protein-coupled receptor (GPCR) desensitization acts as a negative feedback control to stop migration of neutrophils when they sense high concentrations of self-secreted attractants that initially amplify swarming. Interference with this process allows neutrophils to scan larger tissue areas for microbes. Unexpectedly, this does not benefit bacterial clearance as containment of proliferating bacteria by neutrophil clusters becomes impeded. Our data reveal how autosignaling stops self-organized swarming behavior and how the finely tuned balance of neutrophil chemotaxis and arrest counteracts bacterial escape.


Asunto(s)
Quimiotaxis de Leucocito , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Ganglios Linfáticos/microbiología , Neutrófilos/fisiología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/crecimiento & desarrollo , Animales , Agregación Celular , Quimiocina CXCL2 , Eosinófilos/fisiología , Femenino , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Inflamación , Leucotrieno B4/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neutrófilos/inmunología , Infecciones por Pseudomonas/microbiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Piel/inmunología , Piel/lesiones , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA