Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Clin Transl Neurol ; 2(8): 787-96, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26339673

RESUMEN

OBJECTIVE: Pelizaeus-Merzbacher disease (PMD) is a progressive and lethal leukodystrophy caused by mutations affecting the proteolipid protein (PLP1) gene. The most common cause of PMD is a duplication of PLP1 and at present there is no curative therapy available. METHODS: By using transgenic mice carrying additional copies of Plp1, we investigated whether curcumin diet ameliorates PMD symptoms. The diet of Plp1 transgenic mice was supplemented with curcumin for 10 consecutive weeks followed by phenotypical, histological and immunohistochemical analyses of the central nervous system. Plp1 transgenic and wild-type mice fed with normal chow served as controls. RESULTS: Curcumin improved the motor phenotype performance of Plp1 transgenic mice by 50% toward wild-type level and preserved myelinated axons by 35% when compared to Plp1 transgenic controls. Furthermore, curcumin reduced astrocytosis, microgliosis and lymphocyte infiltration in Plp1 transgenic mice. Curcumin diet did not affect the pathologically increased Plp1 mRNA abundance. However, high glutathione levels indicating an oxidative misbalance in the white matter of Plp1 transgenic mice were restored by curcumin treatment. INTERPRETATION: Curcumin may potentially serve as an antioxidant therapy of PMD caused by PLP1 gene duplication.

2.
Am J Hum Genet ; 94(4): 533-46, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24680886

RESUMEN

Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disease, characterized by ataxia, intellectual disability, epilepsy, and premature death. In the majority of cases, PMD is caused by duplication of PLP1 that is expressed in myelinating oligodendrocytes. Despite detailed knowledge of PLP1, there is presently no curative therapy for PMD. We used a Plp1 transgenic PMD mouse model to test the therapeutic effect of Lonaprisan, an antagonist of the nuclear progesterone receptor, in lowering Plp1 mRNA overexpression. We applied placebo-controlled Lonaprisan therapy to PMD mice for 10 weeks and performed the grid slip analysis to assess the clinical phenotype. Additionally, mRNA expression and protein accumulation as well as histological analysis of the central nervous system were performed. Although Plp1 mRNA levels are increased 1.8-fold in PMD mice compared to wild-type controls, daily Lonaprisan treatment reduced overexpression at the RNA level to about 1.5-fold, which was sufficient to significantly improve the poor motor phenotype. Electron microscopy confirmed a 25% increase in the number of myelinated axons in the corticospinal tract when compared to untreated PMD mice. Microarray analysis revealed the upregulation of proapoptotic genes in PMD mice that could be partially rescued by Lonaprisan treatment, which also reduced microgliosis, astrogliosis, and lymphocyte infiltration.


Asunto(s)
Estrenos/uso terapéutico , Antagonistas de Hormonas/uso terapéutico , Enfermedad de Pelizaeus-Merzbacher/tratamiento farmacológico , Progesterona/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Estrenos/farmacocinética , Estrenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Antagonistas de Hormonas/farmacocinética , Antagonistas de Hormonas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Proteolipídica de la Mielina/genética , Fenotipo , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA