Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(6): 3554-3560, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36735829

RESUMEN

Tabletop X-ray spectroscopy measurements at the carbon K-edge complemented by ab initio calculations are used to investigate the influence of the bromine atom on the carbon core-valence transitions in the bromobenzene cation (BrBz+). The electronic ground state of the cation is prepared by resonance-enhanced two-photon ionization of neutral bromobenzene (BrBz) and probed by X-rays produced by high-harmonic generation (HHG). Replacing one of the hydrogen atoms in benzene with a bromine atom shifts the transition from the 1sC* orbital of the carbon atom (C*) bonded to bromine by ∼1 eV to higher energy in the X-ray spectrum compared to the other carbon atoms (C). Moreover, in BrBz+, the X-ray spectrum is dominated by two relatively intense transitions, 1sC→π* and 1sC*→σ*(C*-Br), where the second transition is enhanced relative to the neutral BrBz. In addition, a doublet peak shape for these two transitions is observed in the experiment. The 1sC→π* doublet peak shape arises due to the spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the two other unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals. The 1sC*→σ* doublet peak shape results from several transitions involving σ* and vibrational C*-Br mode activations following the UV ionization, which demonstrates the impact of the C*-Br bond length on the core-valence transition as well as on the relaxation geometry of BrBz+.

2.
Nat Commun ; 12(1): 5003, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408141

RESUMEN

Electronic relaxation in organic chromophores often proceeds via states not directly accessible by photoexcitation. We report on the photoinduced dynamics of pyrazine that involves such states, excited by a 267 nm laser and probed with X-ray transient absorption spectroscopy in a table-top setup. In addition to the previously characterized 1B2u (ππ*) (S2) and 1B3u (nπ*) (S1) states, the participation of the optically dark 1Au (nπ*) state is assigned by a combination of experimental X-ray core-to-valence spectroscopy, electronic structure calculations, nonadiabatic dynamics simulations, and X-ray spectral computations. Despite 1Au (nπ*) and 1B3u (nπ*) states having similar energies at relaxed geometry, their X-ray absorption spectra differ largely in transition energy and oscillator strength. The 1Au (nπ*) state is populated in 200 ± 50 femtoseconds after electronic excitation and plays a key role in the relaxation of pyrazine to the ground state.

3.
J Phys Chem A ; 124(46): 9532-9541, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33103904

RESUMEN

We report a theoretical investigation and elucidation of the X-ray absorption spectra of neutral benzene and of the benzene cation. The generation of the cation by multiphoton ultraviolet (UV) ionization and the measurement of the carbon K-edge spectra of both species using a table-top high-harmonic generation source are described in the companion experimental paper [Epshtein, M.; et al. J. Phys. Chem. A http://dx.doi.org/10.1021/acs.jpca.0c08736]. We show that the 1sC → π transition serves as a sensitive signature of the transient cation formation, as it occurs outside of the spectral window of the parent neutral species. Moreover, the presence of the unpaired (spectator) electron in the π-subshell of the cation and the high symmetry of the system result in significant differences relative to neutral benzene in the spectral features associated with the 1sC → π* transitions. High-level calculations using equation-of-motion coupled-cluster theory provide the interpretation of the experimental spectra and insight into the electronic structure of benzene and its cation. The prominent split structure of the 1sC → π* band of the cation is attributed to the interplay between the coupling of the core → π* excitation with the unpaired electron in the π-subshell and the Jahn-Teller distortion. The calculations attribute most of the splitting (∼1-1.2 eV) to the spin coupling, which is visible already at the Franck-Condon structure, and we estimate the additional splitting due to structural relaxation to be around ∼0.1-0.2 eV. These results suggest that X-ray absorption with increased resolution might be able to disentangle electronic and structural aspects of the Jahn-Teller effect in the benzene cation.

4.
J Phys Chem A ; 124(46): 9524-9531, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33107734

RESUMEN

Ultrafast table-top X-ray spectroscopy at the carbon K-edge is used to measure the X-ray spectral features of benzene radical cations (Bz+). The ground state of the cation is prepared selectively by two-photon ionization of neutral benzene, and the X-ray spectra are probed at early times after the ionization by transient absorption using X-rays produced by high harmonic generation (HHG). Bz+ is well-known to undergo Jahn-Teller distortion, leading to a lower symmetry and splitting of the π orbitals. Comparison of the X-ray absorption spectra of the neutral and the cation reveals a splitting of the two degenerate π* orbitals as well as an appearance of a new peak due to excitation to the partially occupied π-subshell. The π* orbital splitting of the cation, elucidated on the basis of high-level calculations in a companion theoretical paper [Vidal et al. J. Phys. Chem. A. http://dx.doi.org/10.1021/acs.jpca.0c08732], is discovered to be due to both the symmetry distortion and even more dominant spin coupling of the unpaired electron in the partially vacant π orbital (from ionization) with the unpaired electrons resulting from the transition from the 1sC core orbital to the fully vacant π* orbitals.

5.
J Am Chem Soc ; 140(41): 13360-13366, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30247894

RESUMEN

A fundamental chlorine-containing radical, CH2Cl, is generated by the ultrafast photodissociation of CH2ICl at 266 nm and studied at both the carbon K edge (∼284 eV) and chlorine L2,3 edge (∼200 eV) by femtosecond X-ray transient absorption spectroscopy. The electronic structure of CH2Cl radical is characterized by a prominent new carbon 1s X-ray absorption feature at lower energy, resulting from a transition to the half-filled frontier carbon 2p orbital (singly occupied molecular orbital of the radical; SOMO). Shifts of other core-to-valence absorption features upon photodissociation of CH2ICl to yield ·CH2Cl indicate changes in the energies of core-level transitions of carbon and chlorine to the σ*(C-Cl) valence orbital. When the C-I bond breaks, loss of the electron-withdrawing iodine atom donates electron density back to carbon and shields the carbon 1s core level, resulting in a ∼0.8 eV red shift of the carbon 1s to σ*(C-Cl) transition. Meanwhile, the 2p inner shell of the chlorine atom in the radical is less impacted by the iodine atom removal, as demonstrated by the observation of a ∼0.6 eV blue shift of the transitions at the chlorine L2,3 edges, mainly due to the stronger C-Cl bond and the increased energy of the σ*(C-Cl) orbital. The results suggest that the shift in the carbon 1s orbital is greater than the shift in the σ*(C-Cl) orbital upon going from the closed-shell molecule to the radical. Ab initio calculations using the equation of motion coupled-cluster theory establish rigorous assignment and positions of the X-ray spectral features in the parent molecule and the location of the SOMO in the CH2Cl radical.

6.
J Phys Chem Lett ; 7(9): 1717-24, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27101349

RESUMEN

Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs), are considered to be appealing means for manipulating reaction paths, particularly via initial vibrational preparation. Nevertheless, obtaining direct experimental evidence of whether specific-mode excitation affects the passage at the CI is challenging, requiring well-resolved time- or frequency-domain experiments. Here promotion of methylamine-d2 (CH3ND2) molecules to spectral-resolved rovibronic states on the excited S1 potential energy surface, coupled to sensitive D photofragment probing, allowed us to follow the N-D bond fission dynamics. The branching ratios between slow and fast D photofragments and the internal energies of the CH3ND(X̃) photofragments confirm correlated anomalies for predissociation initiated from specific rovibronic states. These anomalies reflect the existence of a dynamic resonance that strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S1 part during N-D bond elongation, and the manipulated passage through the CI that leads to CH3ND radicals excited with C-N-D bending. This resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

7.
J Phys Chem A ; 120(19): 3049-54, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-26595824

RESUMEN

The room-temperature photoacoustic Raman and jet-cooled H action spectra, measured in the region of the fundamental CD3 stretches and the almost isoenergetic overtones or combinations of CD3 deformations in the methylamine-d3 (CD3NH2) isotopologue, show different relative intensities of the vibrational bands. The observed difference and the vibrational assignment point to favored ultraviolet excitation due to larger Franck-Condon (FC) factors from the deformation modes, leading to more effective N-H bond cleavage in CD3NH2 predissociation. The comparable measured two-color reduced-Doppler ion images and total kinetic energy distributions resulting from the predissociation of molecules promoted from vibrationally excited and vibrationless ground states confirmed that the FC factors and not the ensuing dynamics are the main reason for the mode specificity in this molecule.

8.
Phys Chem Chem Phys ; 17(29): 19607-15, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26151352

RESUMEN

Non-adiabatic dynamics at conical intersections (CIs) extensively affects the photostability of biomolecules by efficiently photoinducing decay routes that dissipate harmful excess ultraviolet energy. Here the predissociation of the model test molecules, methylamine (CH3NH2) and its partially deuterated isotopologue (CD3NH2), excited to different specific vibrational modes in the electronically excited state has been experimentally investigated. The H(D) photofragments were detected by two-color reduced-Doppler ion imaging, which allows measurement of their entire velocity distributions in each laser pulse. The fast and slow H products, resulting from N-H bond cleavage, obtained via different dissociation pathways, showed anomalous distributions for some vibronic states, as indicated by dynamic resonances in the product branching ratio and in the anisotropy parameters of the fast H photofragments. This vibronic-specific control is attributed to the sensitivity of the non-adiabatic dynamics to the energy difference between the initially prepared vibrational states and the energy of the CIs and not only to the distinctive pre-excited nuclear motions. The observations in the two isotopologues reveal uniquely detailed insight into the dynamics of state-specific control.

9.
J Chem Phys ; 139(18): 184201, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24320267

RESUMEN

Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ~243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ~243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ~243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H(+) images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.

10.
J Chem Phys ; 138(19): 194310, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23697421

RESUMEN

Room-temperature photoacoustic spectra and jet-cooled action spectra of the regions of the first and second C-H stretch overtones of pyrrole were measured with the goal of gaining new insight on the vibrational patterns and the intramolecular energy flow out of the initially excited vibrational states. The rotational cooling of the action spectra helped in observing hitherto unresolved features, assisting determination of the existing multiple bands and their positions in each region. These bands were analyzed by building vibrational Hamiltonian matrices related to a simplified joint local-mode∕normal-mode (LM∕NM) model, accounting for two types of C-H stretches and their Fermi resonances with the CCH deformation modes. The diagonalization of the LM∕NM vibrational Hamiltonians and the fitting of the eigenvalues to the band positions revealed model parameters, enabling assignment of the observed bands. The time dependences of the survival probabilities of the C-H stretches in the region of the first and second overtones, deduced from the vibrational Hamiltonian, show quantum beats due to the couplings to the deformations and decays driven by weaker interactions to the bath states. The C-H stretches, although somewhat lower in energy, show stronger coupling than the N-H stretches.


Asunto(s)
Pirroles/química , Teoría Cuántica , Análisis Espectral , Vibración
11.
J Phys Chem A ; 117(46): 11618-23, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23140263

RESUMEN

Photoacoustic Raman spectra of gaseous pyrrole in the 3504-3535 and 3068-3152 cm(-1) energetic windows were measured, to obtain new information about the hot bands in the vicinity of the N-H(ν1) and C-H(ν2) stretch fundamentals, respectively. The observed vibrational patterns are characterized by sharp Q-branches, where the strong bands reflect the fundamentals and the weaker ones, as established from their temperature dependence, are hot bands. From the simulation of the observed spectra, the band origins and nondiagonal anharmonicities were determined. Comparison of the latter values to the anharmonicities, x(ij) (i = 1, 2 and j = 16, 15, 14, 12, 11) obtained from anharmonic calculations at the B3LYP/6-311++G(d,p), B3LYP/cc-pVQZ and MP2/cc-pVTZ levels, aided the tentative assignment of the hot bands. The retrieved parameters add new data to the extensive set of already known vibrational constants of pyrrole.

12.
J Chem Phys ; 136(2): 024313, 2012 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-22260585

RESUMEN

The N-H stretch overtones of pyrrole, a key constituent of biologic building blocks, were studied by room temperature photoacoustic and jet-cooled action spectroscopies to unravel their intramolecular dynamics. Contrary to "isolated" states excited with two and three N-H stretch quanta, the one with four quanta shows strong accidental resonances with two other states involving three quanta of N-H stretch and one quantum of C-H stretch. The inhomogeneously reduced features in the action spectra provide the means for getting insight into the intramolecular interactions and the factors controlling energy flow within pyrrole. The time dependence of the survival probability of the 4ν(1) N-H stretch, deduced from the vibrational Hamiltonian, shows an initial decay in ~0.3 ps with ensuing quantum beats from the N-H-C-H resonance and their decay with a time constant of about 5 ps as a result of weaker coupling to bath states.


Asunto(s)
Pirroles/química , Teoría Cuántica , Espectroscopía Infrarroja Corta , Vibración
13.
J Chem Phys ; 134(20): 201104, 2011 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21639415

RESUMEN

Laser-based spectroscopies coupled with molecular beam techniques facilitated the monitoring of H fragments released in ultraviolet photodissociation of pre-excited isoenergetic vibrational levels of pyrrole. Most noticeably, there was an order of magnitude larger reactivity for an eigenstate primarily consisting of two quanta of ring deformation than for another with one quantum of symmetric C-H stretch. The dynamics, the intramolecular interactions controlling the energy flow, and the mode-selectivity within a medium-sized, ten atom molecule, is discussed.


Asunto(s)
Pirroles/química , Procesos Fotoquímicos , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA